Back to Search
Start Over
De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae.
- Source :
-
Microbial cell factories [Microb Cell Fact] 2012 Dec 08; Vol. 11, pp. 155. Date of Electronic Publication: 2012 Dec 08. - Publication Year :
- 2012
-
Abstract
- Background: Flavonoids comprise a large family of secondary plant metabolic intermediates that exhibit a wide variety of antioxidant and human health-related properties. Plant production of flavonoids is limited by the low productivity and the complexity of the recovered flavonoids. Thus to overcome these limitations, metabolic engineering of specific pathway in microbial systems have been envisaged to produce high quantity of a single molecules.<br />Result: Saccharomyces cerevisiae was engineered to produce the key intermediate flavonoid, naringenin, solely from glucose. For this, specific naringenin biosynthesis genes from Arabidopsis thaliana were selected by comparative expression profiling and introduced in S. cerevisiae. The sole expression of these A. thaliana genes yielded low extracellular naringenin concentrations (<5.5 μM). To optimize naringenin titers, a yeast chassis strain was developed. Synthesis of aromatic amino acids was deregulated by alleviating feedback inhibition of 3-deoxy-d-arabinose-heptulosonate-7-phosphate synthase (Aro3, Aro4) and byproduct formation was reduced by eliminating phenylpyruvate decarboxylase (Aro10, Pdc5, Pdc6). Together with an increased copy number of the chalcone synthase gene and expression of a heterologous tyrosine ammonia lyase, these modifications resulted in a 40-fold increase of extracellular naringenin titers (to approximately 200 μM) in glucose-grown shake-flask cultures. In aerated, pH controlled batch reactors, extracellular naringenin concentrations of over 400 μM were reached.<br />Conclusion: The results reported in this study demonstrate that S. cerevisiae is capable of de novo production of naringenin by coexpressing the naringenin production genes from A. thaliana and optimization of the flux towards the naringenin pathway. The engineered yeast naringenin production host provides a metabolic chassis for production of a wide range of flavonoids and exploration of their biological functions.
- Subjects :
- 3-Deoxy-7-Phosphoheptulonate Synthase antagonists & inhibitors
3-Deoxy-7-Phosphoheptulonate Synthase metabolism
Acyltransferases genetics
Acyltransferases metabolism
Ammonia-Lyases genetics
Ammonia-Lyases metabolism
Arabidopsis enzymology
Arabidopsis genetics
Carboxy-Lyases antagonists & inhibitors
Carboxy-Lyases metabolism
Flavonoids biosynthesis
Metabolic Engineering
Plant Proteins genetics
Plant Proteins metabolism
Saccharomyces cerevisiae Proteins antagonists & inhibitors
Saccharomyces cerevisiae Proteins genetics
Saccharomyces cerevisiae Proteins metabolism
Flavanones biosynthesis
Saccharomyces cerevisiae metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1475-2859
- Volume :
- 11
- Database :
- MEDLINE
- Journal :
- Microbial cell factories
- Publication Type :
- Academic Journal
- Accession number :
- 23216753
- Full Text :
- https://doi.org/10.1186/1475-2859-11-155