Back to Search
Start Over
Exploring new biological functions of amyloids: bacteria cell agglutination mediated by host protein aggregation.
- Source :
-
PLoS pathogens [PLoS Pathog] 2012; Vol. 8 (11), pp. e1003005. Date of Electronic Publication: 2012 Nov 01. - Publication Year :
- 2012
-
Abstract
- Antimicrobial proteins and peptides (AMPs) are important effectors of the innate immune system that play a vital role in the prevention of infections. Recent advances have highlighted the similarity between AMPs and amyloid proteins. Using the Eosinophil Cationic Protein as a model, we have rationalized the structure-activity relationships between amyloid aggregation and antimicrobial activity. Our results show how protein aggregation can induce bacteria agglutination and cell death. Using confocal and total internal reflection fluorescence microscopy we have tracked the formation in situ of protein amyloid-like aggregates at the bacteria surface and on membrane models. In both cases, fibrillar aggregates able to bind to amyloid diagnostic dyes were detected. Additionally, a single point mutation (Ile13 to Ala) can suppress the protein amyloid behavior, abolishing the agglutinating activity and impairing the antimicrobial action. The mutant is also defective in triggering both leakage and lipid vesicle aggregation. We conclude that ECP aggregation at the bacterial surface is essential for its cytotoxicity. Hence, we propose here a new prospective biological function for amyloid-like aggregates with potential biological relevance.
- Subjects :
- Amino Acid Substitution
Amyloid genetics
Amyloid immunology
Anti-Bacterial Agents immunology
Bacteria genetics
Bacteria immunology
Bacterial Infections
Eosinophil Cationic Protein genetics
Eosinophil Cationic Protein immunology
Humans
Mutation, Missense
Amyloid chemistry
Anti-Bacterial Agents chemistry
Bacteria chemistry
Eosinophil Cationic Protein chemistry
Immunity, Innate
Microbial Viability
Subjects
Details
- Language :
- English
- ISSN :
- 1553-7374
- Volume :
- 8
- Issue :
- 11
- Database :
- MEDLINE
- Journal :
- PLoS pathogens
- Publication Type :
- Academic Journal
- Accession number :
- 23133388
- Full Text :
- https://doi.org/10.1371/journal.ppat.1003005