Back to Search Start Over

The structure of Sec12 implicates potassium ion coordination in Sar1 activation.

Authors :
McMahon C
Studer SM
Clendinen C
Dann GP
Jeffrey PD
Hughson FM
Source :
The Journal of biological chemistry [J Biol Chem] 2012 Dec 21; Vol. 287 (52), pp. 43599-606. Date of Electronic Publication: 2012 Oct 29.
Publication Year :
2012

Abstract

Coat protein II (COPII)-coated vesicles transport proteins and lipids from the endoplasmic reticulum to the Golgi. Crucial for the initiation of COPII coat assembly is Sec12, a guanine nucleotide exchange factor responsible for activating the small G protein Sar1. Once activated, Sar1/GTP binds to endoplasmic reticulum membranes and recruits COPII coat components (Sec23/24 and Sec13/31). Here, we report the 1.36 Å resolution crystal structure of the catalytically active, 38-kDa cytoplasmic portion of Saccharomyces cerevisiae Sec12. Sec12 adopts a β propeller fold. Conserved residues cluster around a loop we term the "K loop," which extends from the N-terminal propeller blade. Structure-guided site-directed mutagenesis, in conjunction with in vitro and in vivo functional studies, reveals that this region of Sec12 is catalytically essential, presumably because it makes direct contact with Sar1. Strikingly, the crystal structure also reveals that a single potassium ion stabilizes the K loop; bound potassium is, moreover, essential for optimum guanine nucleotide exchange activity in vitro. Thus, our results reveal a novel role for a potassium-stabilized loop in catalyzing guanine nucleotide exchange.

Details

Language :
English
ISSN :
1083-351X
Volume :
287
Issue :
52
Database :
MEDLINE
Journal :
The Journal of biological chemistry
Publication Type :
Academic Journal
Accession number :
23109340
Full Text :
https://doi.org/10.1074/jbc.M112.420141