Back to Search Start Over

PRM1 variant rs35576928 (Arg>Ser) is associated with defective spermatogenesis in the Chinese Han population.

Authors :
He XJ
Ruan J
Du WD
Chen G
Zhou Y
Xu S
Zuo XB
Cao YX
Zhang XJ
Source :
Reproductive biomedicine online [Reprod Biomed Online] 2012 Dec; Vol. 25 (6), pp. 627-34. Date of Electronic Publication: 2012 Sep 16.
Publication Year :
2012

Abstract

Protamine genes play important roles in DNA packaging within the sperm nucleus. In order to evaluate the association of PRM1, PRM2, KIT and KITLG variants with susceptibility to severely defective spermatogenesis, 309 male infertility patients (199 cases with non-obstructive azoospermia and 110 cases with severe oligozoospermia) and 377 controls were recruited in the Chinese Han population. This study genotyped 38 single-nucleotide polymorphisms (SNP) in PRM1, PRM2, KIT and KITLG using Sequenom iplex. The results showed that PRM1 variant rs35576928 (p.R34S) was significantly associated with severe oligozoospermia and played a protective role against the disease (P=0.0079, Bonferroni correction, OR 0.426). The dominant model (variant-containing genotypes) of the SNP was confirmed to protect against the occurrence of oligozoospermia (P=0.0078, Bonferroni correction, OR 0.387). Haplotype analysis of PRM1 and PRM2 in combination exhibited that haplotype TACCGGC exhibited a significant protective effect against the occurrence of oligozoospermia when compared with controls (P=0.002, Bonferroni correction, OR 0.602). Haplotype TACCTGC was strongly associated with risk of the clinical phenotype severe oligozoospermia (P=0.002, Bonferroni correction, OR 2.716). The findings indicated that PRM1 variant rs35576928 (p.R34S) was associated with severely defective spermatogenesis in the Chinese Han population. Male spermatogenic failure may be associated with gene variants. We demonstrated whether such genetic variation of PRM1 and PRM2 affected clinicopathological characteristics and conferred susceptibility to this entity. In this study, we found that PRM1 variant rs35576928 (Arg>Ser) played a protective role against severe oligozoospermia. The dominant model analysis (variant-containing genotypes) confirmed that the SNP was a risk factor of a spermatogenesis defect. Haplotype analysis of PRM1 and PRM2 showed that TACCGGC was a common factor protecting against severe oligozoospermia, while the haplotype TACCTGC was strongly associated with the risk of the severe oligozoospmeria. Our findings indicate that the PRM1 variant rs35576928 (Arg>Ser) is associated with spermatogenesis defect in the Chinese Han population.<br /> (Copyright © 2012 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1472-6491
Volume :
25
Issue :
6
Database :
MEDLINE
Journal :
Reproductive biomedicine online
Publication Type :
Academic Journal
Accession number :
23079002
Full Text :
https://doi.org/10.1016/j.rbmo.2012.09.005