Back to Search
Start Over
Fluoxetine may worsen hyperoxia-induced lung damage in neonatal rats.
- Source :
-
Histology and histopathology [Histol Histopathol] 2012 Dec; Vol. 27 (12), pp. 1599-610. - Publication Year :
- 2012
-
Abstract
- Fluoxetine shows controversial lung effects as it prevents pulmonary hypertension in adult rats but exposure during gestation causes pulmonary hypertension in neonatal rats. In the present study, we tested the null hypothesis that the antidepressant drug fluoxetine does not modify the development of bronchopulmonary dysplasia (BPD) in neonatal rats. Experimental categories included I: room air (controls) with daily injection of saline; II: room air with daily injection of 10 mg/kg fluoxetine, i.p., during two weeks; III: 60% oxygen with daily injection of saline; and IV: 60% oxygen with daily injection of 10 mg/kg fluoxetine, i.p., during two weeks. Hyperoxia resulted in significant reduction in alveolar density and an increase in pulmonary endocrine cells, as well as increases in muscle layer areas of bronchi and arteries. Fluoxetine treatment generated a further increase in muscularisation and did not significantly modify the hyperoxia-induced reductions in alveolar density and increases in the endocrine cells. In hyperoxia, Real-Time PCR showed a lower pulmonary expression of vascular endothelial growth factor (VEGF) with no significant changes in the expression of matrix metalloproteinases (MMP) 2 and 12. Fluoxetine did not affect VEGF or MMP-2 expression but it significantly increased MMP-12 mRNA in both normoxic and hyperoxic groups. Zymographic analysis of MMP-2 activity in bronchoalveolar fluid showed a significantly reduced MMP-2 activity in hyperoxia, while fluoxetine treatment restored MMP-2 activity to levels comparable with the normoxic group. In conclusion, our data show that fluoxetine may worsen bronchial and arterial muscularisation during development of BPD and may up-regulate MMP expression or activity.
- Subjects :
- Animals
Animals, Newborn
Base Sequence
Bronchopulmonary Dysplasia etiology
Bronchopulmonary Dysplasia genetics
Bronchopulmonary Dysplasia metabolism
Bronchopulmonary Dysplasia pathology
Disease Models, Animal
Female
Humans
Hyperoxia genetics
Hyperoxia metabolism
Infant, Newborn
Lung Injury genetics
Lung Injury metabolism
Lung Injury pathology
Matrix Metalloproteinase 12 genetics
Matrix Metalloproteinase 12 metabolism
Matrix Metalloproteinase 2 genetics
Matrix Metalloproteinase 2 metabolism
Muscle, Smooth, Vascular drug effects
Muscle, Smooth, Vascular pathology
Neuroendocrine Cells drug effects
Neuroendocrine Cells metabolism
Neuroendocrine Cells pathology
Pregnancy
RNA, Messenger genetics
RNA, Messenger metabolism
Rats
Rats, Sprague-Dawley
Respiratory Muscles drug effects
Respiratory Muscles pathology
Ubiquitin Thiolesterase metabolism
Up-Regulation drug effects
Vascular Endothelial Growth Factor A genetics
Vascular Endothelial Growth Factor A metabolism
Antidepressive Agents, Second-Generation toxicity
Fluoxetine toxicity
Hyperoxia complications
Lung Injury etiology
Selective Serotonin Reuptake Inhibitors toxicity
Subjects
Details
- Language :
- English
- ISSN :
- 1699-5848
- Volume :
- 27
- Issue :
- 12
- Database :
- MEDLINE
- Journal :
- Histology and histopathology
- Publication Type :
- Academic Journal
- Accession number :
- 23059890
- Full Text :
- https://doi.org/10.14670/HH-27.1599