Back to Search
Start Over
Variation in germline mtDNA heteroplasmy is determined prenatally but modified during subsequent transmission.
- Source :
-
Nature genetics [Nat Genet] 2012 Nov; Vol. 44 (11), pp. 1282-5. Date of Electronic Publication: 2012 Oct 07. - Publication Year :
- 2012
-
Abstract
- A genetic bottleneck explains the marked changes in mitochondrial DNA (mtDNA) heteroplasmy that are observed during the transmission of pathogenic mutations, but the precise timing of these changes remains controversial, and it is not clear whether selection has a role. These issues are important for the genetic counseling of prospective mothers and for the development of treatments aimed at disease prevention. By studying mice transmitting a heteroplasmic single-base-pair deletion in the mitochondrial tRNA(Met) gene, we show that the extent of mammalian mtDNA heteroplasmy is principally determined prenatally within the developing female germline. Although we saw no evidence of mtDNA selection prenatally, skewed heteroplasmy levels were observed in the offspring of the next generation, consistent with purifying selection. High percentages of mtDNA genomes with the tRNA(Met) mutation were linked to a compensatory increase in overall mitochondrial RNA levels, ameliorating the biochemical phenotype and explaining why fecundity is not compromised.
- Subjects :
- Animals
DNA Polymerase gamma
DNA-Directed DNA Polymerase genetics
DNA-Directed DNA Polymerase metabolism
Female
Fertility genetics
Genetic Heterogeneity
Genome, Mitochondrial
Mice
Mice, Inbred C57BL
Oocytes metabolism
RNA, Mitochondrial
DNA, Mitochondrial genetics
Germ-Line Mutation genetics
RNA genetics
RNA, Transfer, Met genetics
Subjects
Details
- Language :
- English
- ISSN :
- 1546-1718
- Volume :
- 44
- Issue :
- 11
- Database :
- MEDLINE
- Journal :
- Nature genetics
- Publication Type :
- Academic Journal
- Accession number :
- 23042113
- Full Text :
- https://doi.org/10.1038/ng.2427