Back to Search
Start Over
Lipid-functionalized dextran nanosystems to overcome multidrug resistance in cancer: a pilot study.
- Source :
-
Clinical orthopaedics and related research [Clin Orthop Relat Res] 2013 Mar; Vol. 471 (3), pp. 915-25. - Publication Year :
- 2013
-
Abstract
- Background: The toxicity of anticancer agents and the difficulty in delivering drugs selectively to tumor cells pose a challenge in overcoming multidrug resistance (MDR). Recently, nanotechnology has emerged as a powerful tool in addressing some of the barriers to drug delivery, including MDR in cancer, by utilizing alternate routes of cellular entry and targeted delivery of drugs and genes. However, it is unclear whether doxorubicin (Dox) can be delivered by nanotechnologic approaches.<br />Questions/purposes: We asked whether (1) Dox-loaded lipid-functionalized dextran-based biocompatible nanoparticles (Dox/NP) can reverse MDR, (2) Dox/NP has more potent cytotoxic effect on MDR tumors than poly(ethylene glycol)-modified liposomal Dox (PLD), and (3) multidrug resistance protein 1 (MDR1) small interfering RNA loaded in these nanoparticles (siMDR1/NP) can modulate MDR.<br />Methods: To create stable Dox/NP and siMDR1/NP, we used two different lipid-modified dextran derivatives. The effect of Dox or Dox/NP was tested on drug-sensitive osteosarcoma (KHOS) and ovarian cancer (SKOV-3) cell cultures in triplicate and their respective MDR counterparts KHOS(R2) and SKOV-3(TR) in triplicate. We determined the effects on drug retention, transfection efficacy of siMDR1/NP, and P-glycoprotein expression and the antiproliferative effect between Dox/NP and PLD in MDR tumor cells.<br />Results: Fluorescence microscopy revealed efficient uptake of the Dox/NP and fluorescently tagged siMDR1/NP. Dox/NP showed five- to 10-fold higher antiproliferative activity at the 50% inhibitory concentration than free Dox in tumor cells. Dox/NP showed twofold higher activity than PLD in MDR tumor cells. siMDR1/NP (100 nM) suppressed P-glycoprotein expression in KHOS(R2).<br />Conclusions: Dextran-lipid nanoparticles are a promising platform for delivering Dox and siRNAs.<br />Clinical Relevance: Biocompatible dextran-based nanoparticles that are directly translatable to clinical medicine may lead to new potential therapeutics for reversing MDR in patients with cancer.
- Subjects :
- ATP Binding Cassette Transporter, Subfamily B
ATP Binding Cassette Transporter, Subfamily B, Member 1 genetics
ATP Binding Cassette Transporter, Subfamily B, Member 1 metabolism
Antibiotics, Antineoplastic chemistry
Antibiotics, Antineoplastic metabolism
Cell Line, Tumor
Chemistry, Pharmaceutical
Dose-Response Relationship, Drug
Doxorubicin chemistry
Doxorubicin metabolism
Humans
Microscopy, Fluorescence
Neoplasms genetics
Neoplasms metabolism
Pilot Projects
Polyethylene Glycols chemistry
RNA Interference
RNA, Small Interfering chemistry
RNA, Small Interfering metabolism
Time Factors
Transfection
Antibiotics, Antineoplastic pharmacology
Cell Proliferation drug effects
Dextrans chemistry
Doxorubicin pharmacology
Drug Carriers
Drug Resistance, Multiple genetics
Drug Resistance, Neoplasm genetics
Lipids chemistry
Nanotechnology
Neoplasms pathology
Subjects
Details
- Language :
- English
- ISSN :
- 1528-1132
- Volume :
- 471
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- Clinical orthopaedics and related research
- Publication Type :
- Academic Journal
- Accession number :
- 23011844
- Full Text :
- https://doi.org/10.1007/s11999-012-2610-2