Back to Search
Start Over
Image quality of ultra-low radiation exposure coronary CT angiography with an effective dose <0.1 mSv using high-pitch spiral acquisition and raw data-based iterative reconstruction.
- Source :
-
European radiology [Eur Radiol] 2013 Mar; Vol. 23 (3), pp. 597-606. Date of Electronic Publication: 2012 Sep 16. - Publication Year :
- 2013
-
Abstract
- Objectives: We evaluated the potential of prospectively ECG-triggered high-pitch spiral acquisition with low tube voltage and current in combination with iterative reconstruction to achieve coronary CT angiography with sufficient image quality at an effective dose below 0.1 mSv.<br />Methods: Contrast-enhanced coronary dual source CT angiography (2 × 128 × 0.6 mm, 80 kV, 50 mAs) in prospectively ECG-triggered high-pitch spiral acquisition mode was performed in 21 consecutive individuals (body weight <100 kg, heart rate ≤60/min). Images were reconstructed with raw data-based filtered back projection (FBP) and iterative reconstruction (IR). Image quality was assessed on a 4-point scale (1 = no artefacts, 4 = unevaluable).<br />Results: Mean effective dose was 0.06 ± 0.01 mSv. Image noise was significantly reduced in IR (128.9 ± 46.6 vs. 158.2 ± 44.7 HU). The mean image quality score was lower for IR (1.9 ± 1.1 vs. 2.2 ± 1.0, P < 0.0001). Of 292 coronary segments, 55 in FBP and 40 in IR (P = 0.12) were graded "unevaluable". In patients with a body weight ≤75 kg, both in FBP and in IR, the rates of fully evaluable segments were significantly higher in comparison to patients >75 kg.<br />Conclusions: Coronary CT angiography with an estimated effective dose <0.1 mSv may provide sufficient image quality in selected patients through the combination of high-pitch spiral acquisition and raw data-based iterative reconstruction.
- Subjects :
- Female
Humans
Male
Middle Aged
Radiographic Image Enhancement methods
Reproducibility of Results
Sensitivity and Specificity
Algorithms
Coronary Angiography methods
Coronary Stenosis diagnostic imaging
Radiation Dosage
Radiation Protection methods
Radiographic Image Interpretation, Computer-Assisted methods
Tomography, Spiral Computed methods
Subjects
Details
- Language :
- English
- ISSN :
- 1432-1084
- Volume :
- 23
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- European radiology
- Publication Type :
- Academic Journal
- Accession number :
- 22983283
- Full Text :
- https://doi.org/10.1007/s00330-012-2656-2