Back to Search Start Over

Neuronal recordings with solid-conductor intracellular nanoelectrodes (SCINEs).

Authors :
Angle MR
Schaefer AT
Source :
PloS one [PLoS One] 2012; Vol. 7 (8), pp. e43194. Date of Electronic Publication: 2012 Aug 15.
Publication Year :
2012

Abstract

Direct electrical recording of the neuronal transmembrane potential has been crucial to our understanding of the biophysical mechanisms subserving neuronal computation. Existing intracellular recording techniques, however, limit the accuracy and duration of such measurements by changing intracellular biochemistry and/or by damaging the plasma membrane. Here we demonstrate that nanoengineered electrodes can be used to record neuronal transmembrane potentials in brain tissue without causing these physiological perturbations. Using focused ion beam milling, we have fabricated Solid-Conductor Intracellular NanoElectrodes (SCINEs), from conventional tungsten microelectrodes. SCINEs have tips that are <300 nm in diameter for several micrometers, but can be easily handled and can be inserted into brain tissue. Performing simultaneous whole-cell patch recordings, we show that SCINEs can record action potentials (APs) as well as slower, subthreshold neuronal potentials without altering cellular properties. These results show a key role for nanotechnology in the development of new electrical recording techniques in neuroscience.

Details

Language :
English
ISSN :
1932-6203
Volume :
7
Issue :
8
Database :
MEDLINE
Journal :
PloS one
Publication Type :
Academic Journal
Accession number :
22905231
Full Text :
https://doi.org/10.1371/journal.pone.0043194