Back to Search Start Over

Leptin-induced mTOR activation defines a specific molecular and transcriptional signature controlling CD4+ effector T cell responses.

Authors :
Procaccini C
De Rosa V
Galgani M
Carbone F
Cassano S
Greco D
Qian K
Auvinen P
Calì G
Stallone G
Formisano L
La Cava A
Matarese G
Source :
Journal of immunology (Baltimore, Md. : 1950) [J Immunol] 2012 Sep 15; Vol. 189 (6), pp. 2941-53. Date of Electronic Publication: 2012 Aug 17.
Publication Year :
2012

Abstract

The sensing by T cells of metabolic and energetic changes in the microenvironment can determine the differentiation, maturation, and activation of these cells. Although it is known that mammalian target of rapamycin (mTOR) gauges nutritonal and energetic signals in the extracellular milieu, it is not known how mTOR and metabolism influence CD4+CD25-FOXP3- effector T cell (Teff) responses. In this article, we show that leptin-induced activation of mTOR, which, in turn, controls leptin production and signaling, causes a defined cellular, biochemical, and transcriptional signature that determine the outcome of Teff responses, both in vitro and in vivo. The blockade of leptin/leptin receptor signaling, induced by genetic means or by starvation, leads to impaired mTOR activity that inhibits the proliferation of Teffs in vivo. Notably, the transcriptional signature of Teffs in the presence of leptin blockade appears similar to that observed in rapamycin-treated Teffs. These results identify a novel link between nutritional status and Teff responses through the leptin-mTOR axis and define a potential target for Teff modulation in normal and pathologic conditions.

Details

Language :
English
ISSN :
1550-6606
Volume :
189
Issue :
6
Database :
MEDLINE
Journal :
Journal of immunology (Baltimore, Md. : 1950)
Publication Type :
Academic Journal
Accession number :
22904304
Full Text :
https://doi.org/10.4049/jimmunol.1200935