Back to Search Start Over

Minibrain/Dyrk1a regulates food intake through the Sir2-FOXO-sNPF/NPY pathway in Drosophila and mammals.

Authors :
Hong SH
Lee KS
Kwak SJ
Kim AK
Bai H
Jung MS
Kwon OY
Song WJ
Tatar M
Yu K
Source :
PLoS genetics [PLoS Genet] 2012; Vol. 8 (8), pp. e1002857. Date of Electronic Publication: 2012 Aug 02.
Publication Year :
2012

Abstract

Feeding behavior is one of the most essential activities in animals, which is tightly regulated by neuroendocrine factors. Drosophila melanogaster short neuropeptide F (sNPF) and the mammalian functional homolog neuropeptide Y (NPY) regulate food intake. Understanding the molecular mechanism of sNPF and NPY signaling is critical to elucidate feeding regulation. Here, we found that minibrain (mnb) and the mammalian ortholog Dyrk1a, target genes of sNPF and NPY signaling, [corrected] regulate food intake in Drosophila melanogaster and mice. In Drosophila melanogaster neuronal cells and mouse hypothalamic cells, sNPF and NPY modulated the mnb and Dyrk1a expression through the PKA-CREB pathway. Increased Dyrk1a activated Sirt1 to regulate the deacetylation of FOXO, which potentiated FOXO-induced sNPF/NPY expression and in turn promoted food intake. Conversely, AKT-mediated insulin signaling suppressed FOXO-mediated sNPF/NPY expression, which resulted in decreasing food intake. Furthermore, human Dyrk1a transgenic mice exhibited decreased FOXO acetylation and increased NPY expression in the hypothalamus, and [corrected] increased food intake. Our findings demonstrate that Mnb/Dyrk1a regulates food intake through the evolutionary conserved Sir2-FOXO-sNPF/NPY pathway in Drosophila melanogaster and mammals.<br />Competing Interests: The authors have declared that no competing interests exist.

Details

Language :
English
ISSN :
1553-7404
Volume :
8
Issue :
8
Database :
MEDLINE
Journal :
PLoS genetics
Publication Type :
Academic Journal
Accession number :
22876196
Full Text :
https://doi.org/10.1371/journal.pgen.1002857