Back to Search
Start Over
The rates of postmortem proteolysis of glutamate transporters differ dramatically between cells and between transporter subtypes.
- Source :
-
The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society [J Histochem Cytochem] 2012 Nov; Vol. 60 (11), pp. 811-21. Date of Electronic Publication: 2012 Aug 02. - Publication Year :
- 2012
-
Abstract
- Glutamate transporters (GLT-1, GLAST, EAAC1) limit the actions of excitatory amino acids. Because a disturbed transporter operation can cause or aggravate neurological diseases, transporters are of considerable neuropathological interest. Human samples, however, are seldom obtained fresh. Here, we used mice brains to study how fast glutamate transporters are degraded after death. Immunoblots showed that terminal GLT-1 epitopes (within residues 1-26 and 518-573) had mostly disappeared after 24 hr. GLAST termini (1-25 and 522-543) degraded slightly slower. In contrast, epitopes within central parts of GLT-1 (493-508) and the EAAC1 C-terminus (510-523) were readily detectable after 72 hr. The decline in immunoreactivity of the GLT-1 and GLAST termini was also seen in tissue sections, but proteolysis did not happen synchronously in all cells. At 24 hr, scattered cells remained strongly immunopositive, while the majority of cells were completely immunonegative. GLAST and GLT-1 co-localized in neocortical tissue, but at 12 hr, many GLAST-positive cells had lost the GLT-1 termini. The uneven disappearance of labeling was not observed with the antibodies to GLT-1 residues 493-508. The immunoreactivity to this epitope correlated better with the reported glutamate uptake activity. Thus, postmortem delay may affect epitopes differently, possibly causing erroneous conclusions about relative expression levels.
- Subjects :
- Amino Acid Transport System X-AG analysis
Animals
Blotting, Western
Brain cytology
Excitatory Amino Acid Transporter 1 analysis
Excitatory Amino Acid Transporter 1 metabolism
Excitatory Amino Acid Transporter 2 analysis
Excitatory Amino Acid Transporter 2 metabolism
Immunohistochemistry
Mice
Mice, Inbred C57BL
Proteolysis
Amino Acid Transport System X-AG metabolism
Brain pathology
Postmortem Changes
Subjects
Details
- Language :
- English
- ISSN :
- 1551-5044
- Volume :
- 60
- Issue :
- 11
- Database :
- MEDLINE
- Journal :
- The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society
- Publication Type :
- Academic Journal
- Accession number :
- 22859703
- Full Text :
- https://doi.org/10.1369/0022155412458589