Back to Search
Start Over
Amino acid transporter genes are essential for FLO11-dependent and FLO11-independent biofilm formation and invasive growth in Saccharomyces cerevisiae.
- Source :
-
PloS one [PLoS One] 2012; Vol. 7 (7), pp. e41272. Date of Electronic Publication: 2012 Jul 26. - Publication Year :
- 2012
-
Abstract
- Amino acids can induce yeast cell adhesion but how amino acids are sensed and signal the modulation of the FLO adhesion genes is not clear. We discovered that the budding yeast Saccharomyces cerevisiae CEN.PK evolved invasive growth ability under prolonged nitrogen limitation. Such invasive mutants were used to identify amino acid transporters as regulators of FLO11 and invasive growth. One invasive mutant had elevated levels of FLO11 mRNA and a Q320STOP mutation in the SFL1 gene that encodes a protein kinase A pathway regulated repressor of FLO11. Glutamine-transporter genes DIP5 and GNP1 were essential for FLO11 expression, invasive growth and biofilm formation in this mutant. Invasive growth relied on known regulators of FLO11 and the Ssy1-Ptr3-Ssy5 complex that controls DIP5 and GNP1, suggesting that Dip5 and Gnp1 operates downstream of the Ssy1-Ptr3-Ssy5 complex for regulation of FLO11 expression in a protein kinase A dependent manner. The role of Dip5 and Gnp1 appears to be conserved in the S. cerevisiae strain ∑1278b since the dip5 gnp1 ∑1278b mutant showed no invasive phenotype. Secondly, the amino acid transporter gene GAP1 was found to influence invasive growth through FLO11 as well as other FLO genes. Cells carrying a dominant loss-of-function PTR3(647::CWNKNPLSSIN) allele had increased transcription of the adhesion genes FLO1, 5, 9, 10, 11 and the amino acid transporter gene GAP1. Deletion of GAP1 caused loss of FLO11 expression and invasive growth. However, deletions of FLO11 and genes encoding components of the mitogen-activated protein kinase pathway or the protein kinase A pathway were not sufficient to abolish invasive growth, suggesting involvement of other FLO genes and alternative pathways. Increased intracellular amino acid pools in the PTR3(647::CWNKNPLSSIN)-containing strain opens the possibility that Gap1 regulates the FLO genes through alteration of the amino acid pool sizes.
- Subjects :
- Alleles
Amino Acids metabolism
Gene Expression Regulation, Fungal
Intracellular Space metabolism
Mutation
Nitrogen metabolism
Saccharomyces cerevisiae cytology
Saccharomyces cerevisiae growth & development
Transcription, Genetic
Amino Acid Transport Systems genetics
Biofilms growth & development
Membrane Glycoproteins metabolism
Saccharomyces cerevisiae genetics
Saccharomyces cerevisiae physiology
Saccharomyces cerevisiae Proteins metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 7
- Issue :
- 7
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 22844449
- Full Text :
- https://doi.org/10.1371/journal.pone.0041272