Back to Search Start Over

Brain metabolite alterations and cognitive dysfunction in early Huntington's disease.

Authors :
Unschuld PG
Edden RA
Carass A
Liu X
Shanahan M
Wang X
Oishi K
Brandt J
Bassett SS
Redgrave GW
Margolis RL
van Zijl PC
Barker PB
Ross CA
Source :
Movement disorders : official journal of the Movement Disorder Society [Mov Disord] 2012 Jun; Vol. 27 (7), pp. 895-902. Date of Electronic Publication: 2012 May 30.
Publication Year :
2012

Abstract

Huntington's disease (HD) is a neurodegenerative disorder characterized by early cognitive decline that progresses at later stages to dementia and severe movement disorder. HD is caused by a cytosine-adenine-guanine triplet-repeat expansion mutation in the Huntingtin gene, allowing early diagnosis by genetic testing. This study aimed to identify the relationship of N-acetylaspartate and other brain metabolites to cognitive function in HD-mutation carriers by using high-field-strength magnetic resonance spectroscopy (MRS) at 7 Tesla. Twelve individuals with the HD mutation in premanifest or early-stage disease versus 12 healthy controls underwent (1)H magnetic resonance spectroscopy (7.2 mL voxel in the posterior cingulate cortex) at 7 Tesla, and also T1-weighted structural magnetic resonance imaging. All participants received standardized tests of cognitive functioning including the Montreal Cognitive Assessment and standardized quantified neurological examination within an hour before scanning. Individuals with the HD mutation had significantly lower posterior cingulate cortex N-acetylaspartate (-9.6%, P = .02) and glutamate (-10.1%, P = .02) levels than did controls. In contrast, in this small group, measures of brain morphology including striatal and ventricle volumes did not differ significantly. Linear regression with Montreal Cognitive Assessment scores revealed significant correlations with N-acetylaspartate (r(2) = 0.50, P = .01) and glutamate (NAA) (r(2) = 0.64, P = .002) in HD subjects. Our data suggest a relationship between reduced N-acetylaspartate and glutamate levels in the posterior cingulate cortex with cognitive decline in the early stages of HD. N-acetylaspartate and glutamate magnetic resonance spectroscopy signals of the posterior cingulate cortex region may serve as potential biomarkers of disease progression or treatment outcome in HD and other neurodegenerative disorders with early cognitive dysfunction, when structural brain changes are still minor.<br /> (Copyright © 2012 Movement Disorder Society.)

Details

Language :
English
ISSN :
1531-8257
Volume :
27
Issue :
7
Database :
MEDLINE
Journal :
Movement disorders : official journal of the Movement Disorder Society
Publication Type :
Academic Journal
Accession number :
22649062
Full Text :
https://doi.org/10.1002/mds.25010