Back to Search Start Over

The Intramolecular Impact to the Sequence Specificity of B→A Transition: Low Energy Conformational Variations in AA/TT and GG/CC Steps.

Authors :
Il'icheva IA
Vlasov PK
Esipova NG
Tumanyan VG
Source :
Journal of biomolecular structure & dynamics [J Biomol Struct Dyn] 2010 Apr; Vol. 27 (5), pp. 677-693.
Publication Year :
2010

Abstract

Abstract It is well known, that local B→A transformation in DNA is involved in several biological processes. In vitro B↔A transition is sequence-specific. The physical basis of this specificity is not known yet. Here we analyze the effect of intramolecular interactions on the structural behavior of the GG/CC and AA/TT steps. These steps exemplify sequence specific bias to the B- or A-form structure. Optimization of potential energy of the molecular systems composed of an octanucle-otide, neutralized by Na(+) and solvated with TIP3P water molecules in rectangular box with periodic boundary conditions gives the statistically representative sets of low energy structures for GG/CC and AA/TT steps in the middle of the diverse flanking sequences. Permissible 3D variations of GG/CC and AA/TT, and correlation of the relative motion of base pairs in these steps were analyzed. AA/TT step permits high variability for low energy conformers in the B-form DNA and small variability for low energy conformers in the A-form DNA. In contrast GG/CC step permits high variability for low energy conformers in the A-form DNA and small variability for low energy conformers in the B-form DNA. The relative motion of base pairs in GG/CC step is high correlated, while in AA/TT step this correlation is notably less. Atom-atom interactions inside-the-step always favors the B-form and their component - stacking interactions (atomatom interactions between nucleic bases) is crucial for the duplex stabilization. Formation of the A-form for both steps is a result of interactions with the flanking sequences and water-cation environment in the box. The average energy difference between conformations presenting B-form and A-form for the GG/CC step is high, while for the AA/TT step it is rather low. Thus, intramolecular interactions in GG/CC and AA/TT steps affect the possible conformational diversity ("conformational entropy") of the A- and B- type structures of DNA step. This determines the known bias of the A-form DNA depending on the enrichment of sequences with GG/CC. If structural tuning during the process of protein-DNA complex formation lead to the local B→A transformation of DNA, it is largely directed by high conformational diversity of GG/CC step in the A-form. In such a case the presence in the target site of both kinds of examined steps ensures the reversible character of ligand binding.

Details

Language :
English
ISSN :
1538-0254
Volume :
27
Issue :
5
Database :
MEDLINE
Journal :
Journal of biomolecular structure & dynamics
Publication Type :
Academic Journal
Accession number :
22632268
Full Text :
https://doi.org/10.1080/07391102.2010.10508581