Back to Search Start Over

Ion selectivity of crown ethers investigated by UV and IR spectroscopy in a cold ion trap.

Authors :
Inokuchi Y
Boyarkin OV
Kusaka R
Haino T
Ebata T
Rizzo TR
Source :
The journal of physical chemistry. A [J Phys Chem A] 2012 Apr 26; Vol. 116 (16), pp. 4057-68. Date of Electronic Publication: 2012 Apr 12.
Publication Year :
2012

Abstract

Electronic and vibrational spectra of benzo-15-crown-5 (B15C5) and benzo-18-crown-6 (B18C6) complexes with alkali metal ions, M(+)•B15C5 and M(+)•B18C6 (M = Li, Na, K, Rb, and Cs), are measured using UV photodissociation (UVPD) and IR-UV double resonance spectroscopy in a cold, 22-pole ion trap. We determine the structure of conformers with the aid of density functional theory calculations. In the Na(+)•B15C5 and K(+)•B18C6 complexes, the crown ethers open the most and hold the metal ions at the center of the ether ring, demonstrating an optimum matching in size between the cavity of the crown ethers and the metal ions. For smaller ions, the crown ethers deform the ether ring to decrease the distance and increase the interaction between the metal ions and oxygen atoms; the metal ions are completely surrounded by the ether ring. In the case of larger ions, the metal ions are too large to enter the crown cavity and are positioned on it, leaving one of its sides open for further solvation. Thermochemistry data calculated on the basis of the stable conformers of the complexes suggest that the ion selectivity of crown ethers is controlled primarily by the enthalpy change for the complex formation in solution, which depends strongly on the complex structure.

Details

Language :
English
ISSN :
1520-5215
Volume :
116
Issue :
16
Database :
MEDLINE
Journal :
The journal of physical chemistry. A
Publication Type :
Academic Journal
Accession number :
22458930
Full Text :
https://doi.org/10.1021/jp3011519