Back to Search
Start Over
Liver x receptors regulate the transcriptional activity of the glucocorticoid receptor: implications for the carbohydrate metabolism.
- Source :
-
PloS one [PLoS One] 2012; Vol. 7 (3), pp. e26751. Date of Electronic Publication: 2012 Mar 22. - Publication Year :
- 2012
-
Abstract
- GLUCOCORTICOIDS are steroid hormones that strongly influence intermediary carbohydrate metabolism by increasing the transcription rate of glucose-6-phosphatase (G6Pase), a key enzyme of gluconeogenesis, and suppress the immune system through the glucocorticoid receptor (GR). The liver X receptors (LXRs), on the other hand, bind to cholesterol metabolites, heterodimerize with the retinoid X receptor (RXR), and regulate the cholesterol turnover, the hepatic glucose metabolism by decreasing the expression of G6Pase, and repress a set of inflammatory genes in immune cells. Since the actions of these receptors overlap with each other, we evaluated the crosstalk between the GR- and LXR-mediated signaling systems. Transient transfection-based reporter assays and gene silencing methods using siRNAs for LXRs showed that overexpression/ligand (GW3965) activation of LXRs/RXRs repressed GR-stimulated transactivation of certain glucocorticoid response element (GRE)-driven promoters in a gene-specific fashion. Activation of LXRs by GW3965 attenuated dexamethasone-stimulated elevation of circulating glucose in rats. It also suppressed dexamethasone-induced mRNA expression of hepatic glucose-6-phosphatase (G6Pase) in rats, mice and human hepatoma HepG2 cells, whereas endogenous, unliganded LXRs were required for dexamethasone-induced mRNA expression of phosphoenolpyruvate carboxylase. In microarray transcriptomic analysis of rat liver, GW3965 differentially regulated glucocorticoid-induced transcriptional activity of about 15% of endogenous glucocorticoid-responsive genes. To examine the mechanism through which activated LXRs attenuated GR transcriptional activity, we examined LXRα/RXRα binding to GREs. Endogenous LXRα/RXRα bound GREs and inhibited GR binding to these DNA sequences both in in vitro and in vivo chromatin immunoprecipitation assays, while their recombinant proteins did so on classic or G6Pase GREs in gel mobility shift assays. We propose that administration of LXR agonists may be beneficial in glucocorticoid treatment- or stress-associated dysmetabolic states by directly and gene-specifically attenuating the transcriptional activity of the GR on glucose and/or lipid metabolism.
- Subjects :
- Animals
Base Sequence
Benzoates pharmacology
Benzylamines pharmacology
Cell Line, Tumor
DNA Primers
Dexamethasone pharmacology
Dimerization
Female
Gene Silencing
Liver metabolism
Liver X Receptors
Oligonucleotide Array Sequence Analysis
Orphan Nuclear Receptors genetics
Rats
Real-Time Polymerase Chain Reaction
Transcriptome
Carbohydrate Metabolism
Orphan Nuclear Receptors physiology
Receptors, Glucocorticoid physiology
Transcription, Genetic physiology
Subjects
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 7
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 22457708
- Full Text :
- https://doi.org/10.1371/journal.pone.0026751