Back to Search
Start Over
γ-Aminobutyric acid-, glycine-, and glutamate-immunopositive boutons on mesencephalic trigeminal neurons that innervate jaw-closing muscle spindles in the rat: ultrastructure and development.
- Source :
-
The Journal of comparative neurology [J Comp Neurol] 2012 Oct 15; Vol. 520 (15), pp. 3414-27. - Publication Year :
- 2012
-
Abstract
- Unlike other primary sensory neurons, the neurons in the mesencephalic trigeminal nucleus (Vmes) receive most of their synaptic input onto their somata. Detailed description of the synaptic boutons onto Vmes neurons is crucial for understanding the synaptic input onto these neurons and their role in the motor control of masticatory muscles. For this, we investigated the distribution of γ-aminobutyric acid (GABA)-, glycine-, and glutamate-immunopositive (+) boutons on Vmes neurons and their ultrastructural parameters that relate to transmitter release: Vmes neurons that innervate masseteric muscle spindles were identified by labeling with horseradish peroxidase injected into the muscle, and immunogold staining and quantitative ultrastructural analysis of synapses onto these neurons were performed in adult rats and during postnatal development. The bouton volume, mitochondrial volume, and active zone area of the boutons contacting labeled somata (axosomatic synapses) were similar to those of boutons forming axoaxonic synapses with Vmes neurons but smaller than those of boutons forming axodendritic or axosomatic synapses with most other neurons. GABA+ , glycine+ , and glutamate+ boutons constituted a large majority (83%) of all boutons on labeled somata. A considerable fraction of boutons (28%) was glycine(+) , and all glycine+ boutons were also GABA+ . Bouton size remained unchanged during postnatal development. These findings suggest that the excitability of Vmes neurons is determined to a great extent by GABA, glycine, and glutamate and that the relatively lower synaptic strength of axosomatic synapses may reflect the role of the Vmes neurons in modulating orofacial motor function.<br /> (Copyright © 2012 Wiley Periodicals, Inc.)
- Subjects :
- Animals
Animals, Newborn
Glutamic Acid physiology
Glycine physiology
Male
Masticatory Muscles growth & development
Motor Neurons metabolism
Motor Neurons ultrastructure
Muscle Spindles growth & development
Presynaptic Terminals metabolism
Rats
Rats, Sprague-Dawley
Trigeminal Nuclei growth & development
Trigeminal Nuclei metabolism
gamma-Aminobutyric Acid physiology
Masticatory Muscles innervation
Masticatory Muscles ultrastructure
Muscle Spindles innervation
Muscle Spindles ultrastructure
Neurotransmitter Agents physiology
Presynaptic Terminals ultrastructure
Trigeminal Nuclei ultrastructure
Subjects
Details
- Language :
- English
- ISSN :
- 1096-9861
- Volume :
- 520
- Issue :
- 15
- Database :
- MEDLINE
- Journal :
- The Journal of comparative neurology
- Publication Type :
- Academic Journal
- Accession number :
- 22430513
- Full Text :
- https://doi.org/10.1002/cne.23110