Back to Search
Start Over
Antitumor effects of genetically engineered stem cells expressing yeast cytosine deaminase in lung cancer brain metastases via their tumor-tropic properties.
- Source :
-
Oncology reports [Oncol Rep] 2012 Jun; Vol. 27 (6), pp. 1823-8. Date of Electronic Publication: 2012 Mar 13. - Publication Year :
- 2012
-
Abstract
- Although mortality related with primary tumors is approximately 10%, metastasis leads to 90% of cancer-associated death. The majority of brain metastases result from lung cancer, but the metastatic mechanism remains unclear. In general, chemotherapy for treating brain diseases is disrupted by the brain blood barrier (BBB). As an approach to improve treatment of lung cancer metastasis to the brain, we employed genetically engineered stem cells (GESTECs), consisting of neural stem cells (NSCs) expressing a suicide gene. Cytosine deaminase (CD), one of the suicide genes, originating from bacterial (bCD) or yeast (yCD), which can convert the non-toxic prodrug, 5-fluorocytosine (5-FC), into 5-fluorouracil (5-FU), can inhibit cancer cell growth. We examined the therapeutic efficacy and migratory properties of GESTECs expressing yCD, designated as HB1.F3.yCD, in a xenograft mouse model of lung cancer metastasis to the brain. In this model, A549 lung cancer cells were implanted in the right hemisphere of the mouse brain, while CM-DiI pre-stained HB1.F3.yCD cells were implanted in the contralateral brain. Two days after the injection of stem cells, 5-FC was administered via intraperitoneal injection. The tumor-tropic effect of HB1.F3.yCD was evident by fluorescent analysis, in which red-colored stem cells migrated to the lung tumor mass of the contralateral brain. By histological analysis of extracted brain, the therapeutic efficacy of HB1.F3.yCD in the presence of 5-FC was confirmed by the reduction in density and aggressive tendency of lung cancer cells following treatment with 5-FC, compared to a negative control or HB1.F3.yCD injection without 5-FC. Taken together, these results indicate that HB1.F3.yCD expressing a suicide gene may be a new therapeutic strategy for lung cancer metastases to the brain in the presence of a prodrug.
- Subjects :
- Animals
Brain Neoplasms secondary
Cell Survival drug effects
Cytosine Deaminase biosynthesis
Flucytosine administration & dosage
Flucytosine metabolism
Genetic Engineering
Genetic Therapy methods
Humans
Lung Neoplasms pathology
Mice
Neural Stem Cells cytology
Saccharomyces cerevisiae enzymology
Saccharomyces cerevisiae genetics
Xenograft Model Antitumor Assays
Brain Neoplasms therapy
Cytosine Deaminase genetics
Cytosine Deaminase metabolism
Fluorouracil metabolism
Fluorouracil pharmacology
Neural Stem Cells enzymology
Neural Stem Cells transplantation
Subjects
Details
- Language :
- English
- ISSN :
- 1791-2431
- Volume :
- 27
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- Oncology reports
- Publication Type :
- Academic Journal
- Accession number :
- 22426744
- Full Text :
- https://doi.org/10.3892/or.2012.1721