Back to Search
Start Over
"OA02" peptide facilitates the precise targeting of paclitaxel-loaded micellar nanoparticles to ovarian cancer in vivo.
- Source :
-
Cancer research [Cancer Res] 2012 Apr 15; Vol. 72 (8), pp. 2100-10. Date of Electronic Publication: 2012 Mar 06. - Publication Year :
- 2012
-
Abstract
- Micellar nanoparticles based on linear polyethylene glycol (PEG) block dendritic cholic acids (CA) copolymers (telodendrimers), for the targeted delivery of chemotherapeutic drugs in the treatment of cancers, are reported. The micellar nanoparticles have been decorated with a high-affinity "OA02" peptide against α-3 integrin receptor to improve the tumor-targeting specificity which is overexpressed on the surface of ovarian cancer cells. "Click chemistry" was used to conjugate alkyne-containing OA02 peptide to the azide group at the distal terminus of the PEG chain in a representative PEG(5k)-CA(8) telodendrimer (micelle-forming unit). The conjugation of OA02 peptide had negligible influence on the physicochemical properties of PEG(5k)-CA(8) nanoparticles and as hypothesized, OA02 peptide dramatically enhanced the uptake efficiency of PEG(5k)-CA(8) nanoparticles (NP) in SKOV-3 and ES-2 ovarian cancer cells via receptor-mediated endocytosis, but not in α-3 integrin-negative K562 leukemia cells. When loaded with paclitaxel, OA02-NPs had significantly higher in vitro cytotoxicity against both SKOV-3 and ES-2 ovarian cancer cells as compared with nontargeted nanoparticles. Furthermore, the in vivo biodistribution study showed OA02 peptide greatly facilitated tumor localization and the intracellular uptake of PEG(5k)-CA(8) nanoparticles into ovarian cancer cells as validated in SKOV3-luc tumor-bearing mice. Finally, paclitaxel (PTX)-loaded OA02-NPs exhibited superior antitumor efficacy and lower systemic toxicity profile in nude mice bearing SKOV-3 tumor xenografts, when compared with equivalent doses of nontargeted PTX-NPs as well as clinical paclitaxel formulation (Taxol). Therefore, OA02-targeted telodendrimers loaded with paclitaxel have great potential as a new therapeutic approach for patients with ovarian cancer.
- Subjects :
- Animals
Cell Line, Tumor
Drug Carriers chemistry
Drug Carriers therapeutic use
Female
Flow Cytometry
Humans
Integrin alpha Chains metabolism
Mice
Mice, Nude
Micelles
Microscopy, Confocal
Nanoparticles chemistry
Nanoparticles therapeutic use
Peptides chemical synthesis
Peptides therapeutic use
Polyethylene Glycols chemistry
Antineoplastic Agents, Phytogenic administration & dosage
Drug Carriers chemical synthesis
Drug Delivery Systems methods
Ovarian Neoplasms drug therapy
Paclitaxel administration & dosage
Subjects
Details
- Language :
- English
- ISSN :
- 1538-7445
- Volume :
- 72
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- Cancer research
- Publication Type :
- Academic Journal
- Accession number :
- 22396491
- Full Text :
- https://doi.org/10.1158/0008-5472.CAN-11-3883