Back to Search
Start Over
On the ictogenic properties of the piriform cortex in vitro.
- Source :
-
Epilepsia [Epilepsia] 2012 Mar; Vol. 53 (3), pp. 459-68. - Publication Year :
- 2012
-
Abstract
- Purpose: The piriform cortex (PC) is known to be epileptic-prone and it may be involved in the manifestation of limbic seizures. Herein, we have characterized some electrophysiologic and pharmacologic properties of the spontaneous epileptiform activity generated by PC networks maintained in vitro.<br />Methods: We performed field potential recordings from the PC in coronal or sagittal rat brain slices along with pharmacologic manipulations of γ-aminobutyric acid (GABA)ergic and glutamatergic signaling during application of the convulsant drug 4-aminopyridine (4AP, 50 μm).<br />Key Findings: Coronal and sagittal preparations generated interictal-like and ictal-like epileptiform discharges with similar duration and frequency. Ictal-like discharges in sagittal slices were initiated mostly in the PC anterior subregion, whereas interictal activity did not have any preferential site of origin. In sagittal slices, high frequency oscillations (HFOs) at 80-200 Hz were detected mainly at the beginning of the ictal discharge in both posterior and anterior subregions. N-Methyl-d-aspartate (NMDA) receptor antagonism abolished ictal discharges, but failed to influence interictal activity. In the absence of ionotropic glutamatergic transmission, PC networks generated slow, GABA receptor-dependent events. Finally, GABA(A) receptor antagonism during application of 4AP only, abolished ictal discharges and disclosed recurrent interictal activity.<br />Significance: Our findings demonstrate that PC networks can sustain in vitro epileptiform activity induced by 4AP. HFOs, which emerge at the onset of ictal activity, may be involved in PC ictogenesis. As reported in several cortical structures, ionotropic glutamatergic neurotransmission is necessary but not sufficient for ictal discharge generation, a process that also requires operative GABA(A) receptor-mediated signaling.<br /> (Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.)
- Subjects :
- Animals
Epilepsy chemically induced
Epilepsy drug therapy
Male
Nerve Net drug effects
Olfactory Pathways drug effects
Organ Culture Techniques
Rats
Rats, Sprague-Dawley
Receptors, GABA-A drug effects
Synaptic Transmission drug effects
Epilepsy physiopathology
Nerve Net physiopathology
Olfactory Pathways physiopathology
Receptors, GABA-A physiology
Synaptic Transmission physiology
Subjects
Details
- Language :
- English
- ISSN :
- 1528-1167
- Volume :
- 53
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- Epilepsia
- Publication Type :
- Academic Journal
- Accession number :
- 22372627
- Full Text :
- https://doi.org/10.1111/j.1528-1167.2012.03408.x