Back to Search Start Over

Chronic protection against ischemia and reperfusion-induced endothelial dysfunction during therapy with different organic nitrates.

Authors :
Lisi M
Oelze M
Dragoni S
Liuni A
Steven S
Luca MC
Stalleicken D
Münzel T
Laghi-Pasini F
Daiber A
Parker JD
Gori T
Source :
Clinical research in cardiology : official journal of the German Cardiac Society [Clin Res Cardiol] 2012 Jun; Vol. 101 (6), pp. 453-9.
Publication Year :
2012

Abstract

Introduction: Ischemic and pharmacologic preconditioning have great clinical potential, but it remains unclear whether their effects can be maintained over time during repeated exposure.We have previously demonstrated that the acute protective effect of nitroglycerin (GTN) is attenuated during repeated daily administration. Pentaerythrityl tetranitrate (PETN) is an organic nitrate with different hemodynamic and biochemical properties. The purpose of the current experiment was to study the preconditioning-like effects of PETN and GTN during repeated daily exposure.<br />Methods and Results: In a randomized, investigator-blind parallel trial, 30 healthy (age 25-32) volunteers were randomized to receive (1) transdermal GTN (0.6 mg/h) administered for 2 h a day for 6 days; (2) oral PETN (80 mg) once a day for 6 days; or (3) no therapy. One week later, endothelium-dependent flow-mediated dilation was assessed before and after exposure to ischemia and reperfusion (IR). IR caused a significant blunting of the endothelium-dependent relaxation in the control group (FMD before IR: 5.8 ± 2.1%; after IR 1.0 ± 2.1%; P < 0.01). Daily, 2-h exposure to GTN partially prevented IR-induced endothelial dysfunction (FMD before IR: 7.7 ± 2.4%; after IR 4.3 ± 3.0%; P < 0.01 compared to before IR). In contrast, daily PETN administration afforded greater protection from IR-induced endothelial injury (FMD before IR: 7.9 ± 1.7%; after IR 6.4 ± 5.3%, P = ns; P < 0.05 ANOVA across groups). In vitro, incubation of human endothelial cells with GTN (but not PETN) was associated with inhibition (P < 0.01) of aldehyde dehydrogenase, an enzyme that is important for both nitrate biotransformation and ischemic preconditioning.<br />Discussion: We previously showed that upon repeated administration, the preconditioning-like effects of GTN are attenuated. The present data demonstrate a gradient in the extent of protection afforded by the two nitrates, suggesting that PETN-induced preconditioning is maintained after prolonged administration in a human in vivo model of endothelial dysfunction induced by ischemia. Using isolated human endothelial cells, we propose a mechanistic explanation for this observation based on differential effects of GTN versus PETN on the activity of mitochondrial aldehyde dehydrogenase.

Details

Language :
English
ISSN :
1861-0692
Volume :
101
Issue :
6
Database :
MEDLINE
Journal :
Clinical research in cardiology : official journal of the German Cardiac Society
Publication Type :
Academic Journal
Accession number :
22298019
Full Text :
https://doi.org/10.1007/s00392-012-0412-x