Back to Search Start Over

WegoLoc: accurate prediction of protein subcellular localization using weighted Gene Ontology terms.

Authors :
Chi SM
Nam D
Source :
Bioinformatics (Oxford, England) [Bioinformatics] 2012 Apr 01; Vol. 28 (7), pp. 1028-30. Date of Electronic Publication: 2012 Jan 31.
Publication Year :
2012

Abstract

Summary: We present an accurate and fast web server, WegoLoc for predicting subcellular localization of proteins based on sequence similarity and weighted Gene Ontology (GO) information. A term weighting method in the text categorization process is applied to GO terms for a support vector machine classifier. As a result, WegoLoc surpasses the state-of-the-art methods for previously used test datasets. WegoLoc supports three eukaryotic kingdoms (animals, fungi and plants) and provides human-specific analysis, and covers several sets of cellular locations. In addition, WegoLoc provides (i) multiple possible localizations of input protein(s) as well as their corresponding probability scores, (ii) weights of GO terms representing the contribution of each GO term in the prediction, and (iii) a BLAST E-value for the best hit with GO terms. If the similarity score does not meet a given threshold, an amino acid composition-based prediction is applied as a backup method.<br />Availability: WegoLoc and User's guide are freely available at the website http://www.btool.org/WegoLoc<br />Contact: smchiks@ks.ac.kr; dougnam@unist.ac.kr<br />Supplementary Information: Supplementary data is available at http://www.btool.org/WegoLoc.

Details

Language :
English
ISSN :
1367-4811
Volume :
28
Issue :
7
Database :
MEDLINE
Journal :
Bioinformatics (Oxford, England)
Publication Type :
Academic Journal
Accession number :
22296788
Full Text :
https://doi.org/10.1093/bioinformatics/bts062