Back to Search Start Over

Multi-residue method for the determination of brominated and organophosphate flame retardants in indoor dust.

Authors :
Van den Eede N
Dirtu AC
Ali N
Neels H
Covaci A
Source :
Talanta [Talanta] 2012 Jan 30; Vol. 89, pp. 292-300. Date of Electronic Publication: 2011 Dec 19.
Publication Year :
2012

Abstract

A new method was optimized for the simultaneous determination of several flame retardants (FRs) in indoor dust, namely polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDs), novel brominated flame retardants (NBFRs) and organophosphate ester flame retardants (OPFRs). The method was based on two previously validated analytical methods for NBFRs and OPFRs, which were combined in order to include even a large number of FRs. An ultrasonic extraction method and two-stage clean-up by adsorption chromatography was optimized using an indoor dust standard reference material (SRM 2584). The 1st cleanup step was essential for fractionation of analytes in the dust extracts, while the 2nd step was important for the further removal of interferences. Analysis of cleaned dust extracts was performed with gas chromatography electron impact ionization mass spectrometry for OPFRs, gas chromatography electron capture negative ionization mass spectrometry for PBDEs and NBFRs and liquid chromatography electrospray ionization tandem mass spectrometry for HBCDs. Method validation by matrix spiking demonstrated good accuracy ranging from 81 to 130%. Matrix effects were investigated by spiking sodium sulfate and dust with analyte standards. Typical recoveries ranged between 80 and 110% at both spiking levels, though occasional deviations were observed at low spiking concentrations. Precision between different days was generally below 24% relative standard deviation (RSD) at low concentrations and below 11% RSD at high concentrations. Method limits of quantification for BFRs ranged between 0.04 (BDE 28) and 17 ng/g (BDE 209), 6 ng/g for sum HBCDs, and for OPFRs between 10 (triphenyl phosphate) and 370 ng/g (tri-isobutyl phosphate). The method was applied to SRM 2585 and to a set of indoor dust samples from various countries. The newly developed method will be employed for the monitoring of human exposure via dust ingestion to phased-out and alternate FRs.<br /> (Copyright © 2011 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1873-3573
Volume :
89
Database :
MEDLINE
Journal :
Talanta
Publication Type :
Academic Journal
Accession number :
22284495
Full Text :
https://doi.org/10.1016/j.talanta.2011.12.031