Back to Search Start Over

An orphan sensor kinase controls quinolone signal production via MexT in Pseudomonas aeruginosa.

Authors :
Zaoui C
Overhage J
Löns D
Zimmermann A
Müsken M
Bielecki P
Pustelny C
Becker T
Nimtz M
Häussler S
Source :
Molecular microbiology [Mol Microbiol] 2012 Feb; Vol. 83 (3), pp. 536-47. Date of Electronic Publication: 2012 Jan 03.
Publication Year :
2012

Abstract

Pseudomonas aeruginosa employs both N-acylhomoserine lactone and 2-alkyl-4(1H)-quinolone (AQ)-mediated interbacterial signalling for the orchestration of a genome-wide gene regulatory network. Despite the many advances that have been made in understanding the target genes of quorum sensing regulation, little is known on how quorum sensing systems are influenced by environmental cues. In this study, we show that AQ production is modulated by an orphan P. aeruginosa sensor kinase. Transcriptional studies of the sensor kinase (MxtR) mutant demonstrated that an induced expression of MexT, a LysR-type transcriptional regulator, largely determined the global transcriptional profile. Thereby, overexpression of the MexT-regulated MexEF-OprN efflux pump led to a delayed expression of the AQ biosynthetic genes and of AQ-dependent virulence factors. Furthermore, we demonstrated that autophosphorylation of MxtR was inhibited by ubiquinone, the central electron carrier of respiration in in vitro experiments. Our results elucidate on a mechanism by which P. aeruginosa senses environmental conditions and adapts by controlling the production of interbacterial AQ signal molecules. A regulatory function of a sensor kinase may indicate that there is a pre-emptive role of adaptation mechanisms that are turned on under distinct environmental conditions and that are important for efficient colonization and pathogenesis.<br /> (© 2011 Blackwell Publishing Ltd.)

Details

Language :
English
ISSN :
1365-2958
Volume :
83
Issue :
3
Database :
MEDLINE
Journal :
Molecular microbiology
Publication Type :
Academic Journal
Accession number :
22168309
Full Text :
https://doi.org/10.1111/j.1365-2958.2011.07947.x