Back to Search Start Over

Complication probability model for subcutaneous fibrosis based on published data of partial and whole breast irradiation.

Authors :
Avanzo M
Stancanello J
Trovò M
Jena R
Roncadin M
Trovò MG
Capra E
Source :
Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB) [Phys Med] 2012 Oct; Vol. 28 (4), pp. 296-306. Date of Electronic Publication: 2011 Nov 26.
Publication Year :
2012

Abstract

Purpose: To extend the application of current radiation therapy (RT) based normal tissue complication probability (NTCP) models of radiation-induced fibrosis (RIF) of the breast to include the effects of fractionation, inhomogeneous dose, incomplete recovery, and time after the end of radiotherapy in partial breast irradiation (PBI).<br />Materials and Methods: An NTCP Lyman model with biologically effective uniform dose (BEUD) with and without a correction for the effect of incomplete repair was used. The time to occurrence of RIF was also taken into account. The radiobiological parameters were determined by fitting incidences of moderate/severe RIF in published randomized studies on RT of the breast. The NTCP model was used to calculate the risk of toxicity in 35 patients treated with intensity modulated, non-accelerated PBI and the result was compared with observed incidence of RIF.<br />Results: With α/β fixed at 3Gy the parameters of the model without correction for incomplete repair extracted from fitting were: 50% complication probability biologically effective dose BEUD(50) = 107.2 Gy (95%CI = 95.9-118.6 Gy), volume parameter n = 0.06 (95%CI = 0-0.23), and slope of dose response m = 0.22, (95%CI = 0.20-0.23). After including the correction for incomplete repair with repair halftime for subcutaneous tissue of τ = 4.4 h we obtained BEUD(50) = 105.8 Gy (95%CI = 96.9-114.6Gy), n = 0.15 (95%CI = 0-0.33), m = 0.22 (95%CI = 0.20-0.23). Average NTCP predicted by these models, 4.3% and 2.0% respectively, offered a good agreement with RIF incidence in our patients, 5.7%, after an average follow-up of 12 months.<br />Conclusion: The NTCP models of RIF, incorporating the effects of fractionation, volume effect, and latency of toxicity look promising to model PBI. Clinical validation from a prospective PBI treatment study is under development and will help test this preliminary result.<br /> (Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1724-191X
Volume :
28
Issue :
4
Database :
MEDLINE
Journal :
Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
Publication Type :
Academic Journal
Accession number :
22119271
Full Text :
https://doi.org/10.1016/j.ejmp.2011.11.002