Back to Search Start Over

Identification of a conserved anti-apoptotic protein that modulates the mitochondrial apoptosis pathway.

Authors :
Zhang Y
Johansson E
Miller ML
Jänicke RU
Ferguson DJ
Plas D
Meller J
Anderson MW
Source :
PloS one [PLoS One] 2011; Vol. 6 (9), pp. e25284. Date of Electronic Publication: 2011 Sep 30.
Publication Year :
2011

Abstract

Here we identified an evolutionarily highly conserved and ubiquitously expressed protein (C9orf82) that shows structural similarities to the death effector domain of apoptosis-related proteins. RNAi knockdown of C9orf82 induced apoptosis in A-549 and MCF7/casp3-10b lung and breast carcinoma cells, respectively, but not in cells lacking caspase-3, caspase-10 or both. Apoptosis was associated with activated caspases-3, -8, -9 and -10, and inactivation of caspases 10 or 3 was sufficient to block apoptosis in this pathway. Apoptosis upon knockdown of C9orf82 was associated with increased caspase-10 expression and activation, which was required for the generation of an 11 kDa tBid fragment and activation of Caspase-9. These data suggest that C9orf82 functions as an anti-apoptotic protein that modulates a caspase-10 dependent mitochondrial caspase-3/9 feedback amplification loop. We designate this ubiquitously expressed and evolutionarily conserved anti-apoptotic protein Conserved Anti-Apoptotic Protein (CAAP). We also demonstrated that treatment of MCF7/casp3-10b cells with staurosporine and etoposides induced apoptosis and knockdown of CAAP expression. This implies that the CAAP protein could be a target for chemotherapeutic agents.

Details

Language :
English
ISSN :
1932-6203
Volume :
6
Issue :
9
Database :
MEDLINE
Journal :
PloS one
Publication Type :
Academic Journal
Accession number :
21980415
Full Text :
https://doi.org/10.1371/journal.pone.0025284