Back to Search
Start Over
Use of a robotic sampling platform to assess young children's exposure to indoor bioaerosols.
- Source :
-
Indoor air [Indoor Air] 2012 Apr; Vol. 22 (2), pp. 159-69. Date of Electronic Publication: 2011 Oct 24. - Publication Year :
- 2012
-
Abstract
- Unlabelled: Indoor exposures to allergens, mold spores, and endotoxin have been suggested as etiological agents of asthma; therefore, accurate determination of those exposures, especially in young children (6-36 months), is important for understanding the development of asthma. Because use of personal sampling equipment in this population is difficult, and in children <1 year of age impossible, we developed a personal sampling surrogate: the Pretoddler Inhalable Particulate Environmental Robotic (PIPER) sampler to better estimate their exposures. During sampling, PIPER simulates the activity patterns, speed of motion, and the height of the breathing zones of young children, and mechanically resuspends the deposited dust just as a young child does during running and crawling. The concentrations of allergens, mold spores, and endotoxin measured by PIPER were compared to those measured using traditional stationary air sampling method in 75 homes in central New Jersey, United States. Endotoxin was detected in all homes with median concentrations of 1.0 and 0.55 EU/m(3) for PIPER and stationary sampler, respectively. The difference in median concentrations obtained using the two methods was statistically significant for homes with carpeted floors (P = 0.0001) in the heating season. For such homes, the average ratio of endotoxin concentration measured by PIPER to the stationary sampler was 2.96 (95% CI 2.29-3.63). Fungal spores were detected in all homes, with median fungal concentrations of 316 and 380 spores/m(3) for PIPER and stationary sampler, respectively. For fungi, the difference between the two sampling methods was not statistically significant. For both sampling methods, the total airborne mold levels were statistically significantly higher in the non-heating season than in the heating season. Allergens were detected in ~15% of investigated homes. The data indicate that the traditional stationary air-sampling methods may substantially underestimate personal exposures to endotoxin, especially due to resuspension of dust from carpeted floor surfaces. A personal sampling surrogate, such as PIPER, is a feasible approach to estimate personal exposures in young children. PIPER should be seriously considered as the sampling platform for future exposure studies in young children.<br />Practical Implications: This study investigated potential indoor bioaerosol exposure of young children using a Pretoddler Inhalable Particulate Environmental Robotic (PIPER) sampler platform. The results show that the traditional stationary air-sampling methods can substantially underestimate personal exposures to resuspended material, and that a personal sampling surrogate, such as PIPER, offers a feasible surrogate for measuring personal inhalation exposures of young children.<br /> (© 2011 John Wiley & Sons A/S.)
- Subjects :
- Aerosols analysis
Air Pollution, Indoor adverse effects
Allergens adverse effects
Allergens analysis
Asthma etiology
Endotoxins adverse effects
Endotoxins analysis
Environmental Exposure
Housing
Humans
Infant
New Jersey
Particulate Matter adverse effects
Particulate Matter analysis
Spores, Fungal isolation & purification
Air Pollution, Indoor analysis
Robotics instrumentation
Subjects
Details
- Language :
- English
- ISSN :
- 1600-0668
- Volume :
- 22
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- Indoor air
- Publication Type :
- Academic Journal
- Accession number :
- 21954880
- Full Text :
- https://doi.org/10.1111/j.1600-0668.2011.00749.x