Back to Search Start Over

Improvement of glyphosate resistance through concurrent mutations in three amino acids of the Ochrobactrum 5-enopyruvylshikimate-3-phosphate synthase.

Authors :
Tian YS
Xu J
Xiong AS
Zhao W
Fu XY
Peng RH
Yao QH
Source :
Applied and environmental microbiology [Appl Environ Microbiol] 2011 Dec; Vol. 77 (23), pp. 8409-14. Date of Electronic Publication: 2011 Sep 23.
Publication Year :
2011

Abstract

A mutant of 5-enopyruvylshikimate-3-phosphate synthase from Ochrobactrum anthropi was identified after four rounds of DNA shuffling and screening. Its ability to restore the growth of the mutant ER2799 cell on an M9 minimal medium containing 300 mM glyphosate led to its identification. The mutant had mutations in seven amino acids: E145G, N163H, N267S, P318R, M377V, M425T, and P438L. Among these mutations, N267S, P318R, and M425T have never been previously reported as important residues for glyphosate resistance. However, in the present study they were found by site-directed mutagenesis to collectively contribute to the improvement of glyphosate tolerance. Kinetic analyses of these three mutants demonstrated that the effectiveness of these three individual amino acid alterations on glyphosate tolerance was in the order P318R > M425T > N267S. The results of the kinetic analyses combined with a three-dimensional structure modeling of the location of P318R and M425T demonstrate that the lower hemisphere's upper surface is possibly another important region for glyphosate resistance. Furthermore, the transgenic Arabidopsis was obtained to confirm the potential of the mutant in developing glyphosate-resistant crops.

Details

Language :
English
ISSN :
1098-5336
Volume :
77
Issue :
23
Database :
MEDLINE
Journal :
Applied and environmental microbiology
Publication Type :
Academic Journal
Accession number :
21948846
Full Text :
https://doi.org/10.1128/AEM.05271-11