Back to Search Start Over

Biophysical investigations of GBV-C E1 peptides as potential inhibitors of HIV-1 fusion peptide.

Authors :
Sánchez-Martín MJ
Urbán P
Pujol M
Haro I
Alsina MA
Busquets MA
Source :
Chemphyschem : a European journal of chemical physics and physical chemistry [Chemphyschem] 2011 Oct 24; Vol. 12 (15), pp. 2816-22. Date of Electronic Publication: 2011 Sep 08.
Publication Year :
2011

Abstract

Five peptide sequences corresponding to the E1 protein of GBV-C [NCCAPEDIGFCLEGGCLV (P7), APEDIGFCLEGGCLVALG (P8), FCLEGGCLVALGCTICTD (P10), QAGLAVRPGKSAAQLVGE (P18), and AQLVGELGSLYGPLSVSA (P22)] were synthesized because they were capable of interfering with the HIV-1 fusion peptide (HIV-1 FP)-vesicle interaction. In this work the interaction of these peptides with the HIV-1 FP, as well as with membrane models, was analyzed to corroborate their inhibition ability and to understand if the interaction with the fusion peptide takes place in solution or at the membrane level. Several studies were carried out on aggregation and membrane fusion, surface Plasmon resonance, and conformational analysis by circular dichroism. Moreover, in vitro toxicity assays, including cytotoxicity studies in 3T3 fibroblasts and hemolysis assays in human red blood cells, were performed to evaluate if these peptides could be potentially used in anti-HIV-1 therapy. Results show that P10 is not capable of inhibiting membrane fusion caused by HIV-1 and it aggregates liposomes and fuses membranes, thus we decided to discard it for futures studies. P18 and P22 do not inhibit membrane fusion, but they inhibit the ability of HIV-1 FP to form pores in bilayers, thus we have not discarded them yet. P7 and P8 were selected as the best candidates for future studies because they are capable of inhibiting membrane fusion and the interaction of HIV-1 FP with bilayers. Therefore, these peptides could be potentially used in future anti-HIV-1 research.<br /> (Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)

Details

Language :
English
ISSN :
1439-7641
Volume :
12
Issue :
15
Database :
MEDLINE
Journal :
Chemphyschem : a European journal of chemical physics and physical chemistry
Publication Type :
Academic Journal
Accession number :
21905195
Full Text :
https://doi.org/10.1002/cphc.201100407