Back to Search
Start Over
The novel chemical entity YTR107 inhibits recruitment of nucleophosmin to sites of DNA damage, suppressing repair of DNA double-strand breaks and enhancing radiosensitization.
- Source :
-
Clinical cancer research : an official journal of the American Association for Cancer Research [Clin Cancer Res] 2011 Oct 15; Vol. 17 (20), pp. 6490-9. Date of Electronic Publication: 2011 Aug 30. - Publication Year :
- 2011
-
Abstract
- Purpose: Radiation therapy continues to be an important therapeutic strategy for providing definitive local/regional control of human cancer. However, oncogenes that harbor driver mutations and/or amplifications can compromise therapeutic efficacy. Thus, there is a need for novel approaches that enhance the DNA damage produced by ionizing radiation.<br />Experimental Design: A forward chemical genetic approach coupled with cell-based phenotypic screening of several tumor cell lines was used to identify a novel chemical entity (NCE) that functioned as a radiation sensitizer. Proteomics, comet assays, confocal microscopy, and immunoblotting were used to identify the biological target.<br />Results: The screening process identified a 5-((N-benzyl-1H-indol-3-yl)-methylene)pyrimidine-2,4,6(1H,3H,5H)trione as an NCE that radiosensitized cancer cells expressing amplified and/or mutated RAS, ErbB, PIK3CA, and/or BRAF oncogenes. Affinity-based solid-phase resin capture followed by liquid chromatography/tandem mass spectrometry identified the chaperone nucleophosmin (NPM) as the NCE target. SiRNA suppression of NPM abrogated radiosensitization by the NCE. Confocal microscopy showed that the NCE inhibited NPM shuttling to radiation-induced DNA damage repair foci, and the analysis of comet assays indicated a diminished rate of DNA double-strand break repair.<br />Conclusion: These data support the hypothesis that inhibition of DNA repair due to inhibition of NPM shuttling increases the efficacy of DNA-damaging therapeutic strategies.<br /> (©2011 AACR.)
- Subjects :
- Animals
Barbiturates pharmacology
Cell Line, Tumor
DNA Damage drug effects
Humans
Indoles pharmacology
Mice
Mice, Nude
Molecular Chaperones metabolism
Molecular Targeted Therapy
Neoplasms metabolism
Nucleophosmin
Radiation Tolerance drug effects
Random Allocation
DNA Breaks, Double-Stranded drug effects
DNA Repair drug effects
Neoplasms drug therapy
Nuclear Proteins metabolism
Radiation-Sensitizing Agents pharmacology
Subjects
Details
- Language :
- English
- ISSN :
- 1557-3265
- Volume :
- 17
- Issue :
- 20
- Database :
- MEDLINE
- Journal :
- Clinical cancer research : an official journal of the American Association for Cancer Research
- Publication Type :
- Academic Journal
- Accession number :
- 21878537
- Full Text :
- https://doi.org/10.1158/1078-0432.CCR-11-1054