Back to Search
Start Over
Mean strain throughout the heart cycle by longitudinal two-dimensional speckle-tracking echocardiography enables early prediction of infarct size.
- Source :
-
Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography [J Am Soc Echocardiogr] 2011 Oct; Vol. 24 (10), pp. 1118-25. Date of Electronic Publication: 2011 Jul 18. - Publication Year :
- 2011
-
Abstract
- Background: Early prediction of infarct size directs therapy in patients with acute myocardial infarction (AMI). Global strain by echocardiography describes myocardial deformation and correlates with infarct size. However, peak strain measures deformation at a single time point, whereas ischemia and necrosis influence deformation throughout the heart cycle. It was hypothesized that the measurement of myocardial deformation throughout the heart cycle by mean strain is a more comprehensive expression of myocardial deformation. The aim of this study was to assess the ability of mean strain to predict infarct size and to identify large infarctions at admission and after revascularization in patients with AMI.<br />Methods: Seventy-six patients with AMI were included. Echocardiographic measurements were performed at admission and after revascularization. Myocardial strain was calculated using speckle-tracking echocardiography. Infarct size was measured using contrast-enhanced magnetic resonance imaging ≥3 months after revascularization.<br />Results: There were significant correlations between infarct size and longitudinal global mean strain, longitudinal global strain, and left ventricular ejection fraction (P < .0001), both at admission and after revascularization. The correlations improved after revascularization. Longitudinal global mean strain had the best correlation with infarct size and the best ability to discriminate between different infarct size categories. At admission, a cutoff value of -7.6 had 89% sensitivity, 88% specificity, and an area under the receiver operating characteristic curve of 0.92 for the identification of large infarctions. Prediction of infarct size improved for all parameters after revascularization.<br />Conclusions: Longitudinal global mean strain provides improved early prediction of infarct size in patients with AMI compared with longitudinal global strain and left ventricular ejection fraction.
- Subjects :
- Female
Follow-Up Studies
Humans
Male
Middle Aged
Myocardial Infarction physiopathology
Myocardial Infarction surgery
Myocardial Revascularization
Predictive Value of Tests
Prognosis
Severity of Illness Index
Echocardiography methods
Heart Rate
Myocardial Contraction physiology
Myocardial Infarction diagnostic imaging
Stroke Volume physiology
Subjects
Details
- Language :
- English
- ISSN :
- 1097-6795
- Volume :
- 24
- Issue :
- 10
- Database :
- MEDLINE
- Journal :
- Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography
- Publication Type :
- Academic Journal
- Accession number :
- 21764553
- Full Text :
- https://doi.org/10.1016/j.echo.2011.06.002