Back to Search
Start Over
Vitamin D receptor (VDR) regulation of voltage-gated chloride channels by ligands preferring a VDR-alternative pocket (VDR-AP).
- Source :
-
Molecular endocrinology (Baltimore, Md.) [Mol Endocrinol] 2011 Aug; Vol. 25 (8), pp. 1289-300. Date of Electronic Publication: 2011 Jun 09. - Publication Year :
- 2011
-
Abstract
- We have postulated that the vitamin D receptor (VDR) contains two overlapping ligand binding sites, a genomic pocket and an alternative pocket (AP), that mediate regulation of gene transcription and rapid responses, respectively. Flexible VDR + ligand docking calculations predict that the major blood metabolite, 25(OH)-vitamin D(3) (25D3), and curcumin (CM) bind more selectively to the VDR-AP when compared with the seco-steroid hormone 1α,25(OH)(2)-vitamin D(3) (1,25D3). In VDR wild-type-transfected COS-1 cells and TM4 Sertoli cells, 1,25D3, 25D3, and CM each trigger voltage-gated, outwardly rectifying chloride channel (ORCC) currents that can be blocked by the VDR antagonist 1β,25(OH)(2)-vitamin D(3) and the chloride channel antagonist (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid). VDR mutational analysis in transfected COS-1 cells demonstrate the DNA-binding domain is not, but the ligand binding and hinge domains of the VDR are, required for 1,25D3 and 25D3 to activate the ORCC. Dose-response studies demonstrate that 25D3 and 1,25D3 are approximately equipotent in stimulating ORCC rapid responses, whereas 1 nm 1,25D3 was 1000-fold more potent than 25D3 and CM in stimulating gene expression. The VDR-AP agonist effects of 1,25D3, 25D3, and low-dose CM are lost after pretreatment of TM4 cells with VDR small interfering RNA. Collectively, these results are consistent with an essential role for the VDR-AP in initiating the signaling required for rapid opening of ORCC. The fact that 25D3 is equipotent to 1,25D3 in opening ORCC suggests that reconsideration of the ability of 25D3 to generate biological responses in vivo may be in order.
- Subjects :
- Animals
Binding Sites
COS Cells
Calcifediol pharmacology
Chlorocebus aethiops
Curcumin pharmacology
Drug Synergism
Ergosterol pharmacology
Genome genetics
Humans
Ligands
Male
Models, Molecular
Protein Structure, Tertiary
Receptors, Calcitriol chemistry
Sertoli Cells drug effects
Sertoli Cells metabolism
Structure-Activity Relationship
Transfection
Chloride Channels metabolism
Ion Channel Gating drug effects
Receptors, Calcitriol metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1944-9917
- Volume :
- 25
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- Molecular endocrinology (Baltimore, Md.)
- Publication Type :
- Academic Journal
- Accession number :
- 21659475
- Full Text :
- https://doi.org/10.1210/me.2010-0442