Back to Search
Start Over
Clinical and molecular characterization of a transmitted reciprocal translocation t(1;12)(p32.1;q21.3) in a family co-segregating with mental retardation, language delay, and microcephaly.
- Source :
-
BMC medical genetics [BMC Med Genet] 2011 May 20; Vol. 12, pp. 70. Date of Electronic Publication: 2011 May 20. - Publication Year :
- 2011
-
Abstract
- Background: Chromosome translocation associated with neurodevelopmental disorders provides an opportunity to identify new disease-associated genes and gain new insight into their function. During chromosome analysis, we identified a reciprocal translocation between chromosomes 1p and 12q, t(1; 12)(p32.1; q21.3), co-segregating with microcephaly, language delay, and severe psychomotor retardation in a mother and her two affected boys.<br />Methods: Fluorescence in situ hybridization (FISH), long-range PCR, and direct sequencing were used to map the breakpoints on chromosomes 1p and 12q. A reporter gene assay was conducted in human neuroblastoma (SKNSH) and Chinese hamster ovary (CHO) cell lines to assess the functional implication of the fusion sequences between chromosomes 12 and 1.<br />Results: We determined both breakpoints at the nucleotide level. Neither breakpoint disrupted any known gene directly. The breakpoint on chromosome 1p was located amid a gene-poor region of ~ 1.1 Mb, while the breakpoint on chromosome 12q was located ~ 3.4 kb downstream of the ALX1 gene, a homeobox gene. In the reporter gene assay, we discovered that the fusion sequences construct between chromosomes 12 and 1 had a ~ 1.5 to 2-fold increased reporter gene activity compared with the corresponding normal chromosome 12 sequences construct.<br />Conclusion: Our findings imply that the translocation may enhance the expression of the ALX1 gene via the position effect and result in the clinical symptoms of this family. Our findings may also expand the clinical phenotype spectrum of ALX1-related human diseases as loss of the ALX1 function was recently reported to result in abnormal craniofacial development.
- Subjects :
- Animals
Base Sequence
CHO Cells
Child
Child, Preschool
Chromosome Breakpoints
Cricetinae
Cricetulus
Female
Genes, Reporter genetics
Humans
In Situ Hybridization, Fluorescence
Karyotyping
Male
Molecular Sequence Data
Pedigree
Phenotype
Chromosome Segregation genetics
Chromosomes, Human, Pair 1 genetics
Chromosomes, Human, Pair 12 genetics
Intellectual Disability genetics
Language Development Disorders genetics
Microcephaly genetics
Translocation, Genetic genetics
Subjects
Details
- Language :
- English
- ISSN :
- 1471-2350
- Volume :
- 12
- Database :
- MEDLINE
- Journal :
- BMC medical genetics
- Publication Type :
- Academic Journal
- Accession number :
- 21595979
- Full Text :
- https://doi.org/10.1186/1471-2350-12-70