Back to Search Start Over

Conservation of function of Drosophila melanogaster abl and murine v-abl proteins in transformation of mammalian cells.

Authors :
Holland GD
Henkemeyer MJ
Kaehler DA
Hoffmann FM
Risser R
Source :
Journal of virology [J Virol] 1990 May; Vol. 64 (5), pp. 2226-35.
Publication Year :
1990

Abstract

The Drosophila melanogaster abl and the murine v-abl genes encode tyrosine protein kinases (TPKs) whose amino acid sequences are highly conserved. To assess functional conservation between the two gene products, we constructed Drosophila abl/v-abl-chimeric Abelson murine leukemia viruses. In these chimeric Abelson murine leukemia viruses, the TPK and carboxy-terminal regions of v-abl were replaced with the corresponding regions of D. melanogaster abl. The chimeric Abelson murine leukemia viruses were able to mediate morphological and oncogenic transformation of NIH 3T3 cells and were able to abrogate the interleukin-3 dependence of a lymphoid cell line. We also found that a virus that contained both TPK and carboxy-terminal Drosophila abl regions had no in vitro transforming activity for primary bone marrow cells and lacked the ability to induce tumors in susceptible mice. A virus that replaced only a portion of the v-abl TPK region with that of Drosophila abl had low activity in in vitro bone marrow transformation and tumorigenesis assays. These results indicate that the transforming functions of abl TPKs are only partially conserved through evolution. These results also imply that the TPK region of v-abl is a major determinant of its efficient lymphoid cell-transforming activity.

Details

Language :
English
ISSN :
0022-538X
Volume :
64
Issue :
5
Database :
MEDLINE
Journal :
Journal of virology
Publication Type :
Academic Journal
Accession number :
2157882
Full Text :
https://doi.org/10.1128/JVI.64.5.2226-2235.1990