Back to Search
Start Over
Thrombospondin-2 inhibits tumor cell invasion through the modulation of MMP-9 and uPA in pancreatic cancer cells.
- Source :
-
Molecular medicine reports [Mol Med Rep] 2008 May-Jun; Vol. 1 (3), pp. 423-7. - Publication Year :
- 2008
-
Abstract
- The extracellular matrix protein thrombospondin (TSP) plays an important role in a variety of biological processes, including cell-cell and cell-matrix interactions. The biological role of TSP-2 in invasion and metastasis is poorly understood, while it is known that TSP-1 regulates a proteolytic cascade that allows tumor cells to invade and metastasize. In this study, we examined the role of TSP-2 in tumor cell invasion and its association with proteolytic proteins, matrix metalloproteinase (MMP) and the plasminogen/plasmin system, including urokinase-type plasminogen activator (uPA), in the human pancreatic cancer cell line PANC-1. PANC-1 cells expressed a low level of TSP-2, but significant levels of TSP-1. We isolated three clones of PANC-1 transformants stably overexpressing human TSP-2 (PANC-T). PANC-T highly expressed the TSP-2 gene and protein, while TSP-1 expression was not altered. In vitro invasion assays demonstrated that the invasiveness of PANC-T clones was significantly suppressed (p<0.05; Welch test). Zymography revealed that restoration of TSP-2 synthesis in the PANC-T clones significantly inhibited MMP-9 activity (p<0.05; Welch test). uPA activity in the PANC-T clones was significantly suppressed (p<0.05; Welch test). We concluded that restoration of TSP-2 can inhibit cell invasion through the down-regulation of MMP-9 and uPA activity in pancreatic cancer cell lines. Thus, TSP-2 may be a potent inhibitor of metastasis in pancreatic cancer.
Details
- Language :
- English
- ISSN :
- 1791-2997
- Volume :
- 1
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- Molecular medicine reports
- Publication Type :
- Academic Journal
- Accession number :
- 21479427