Back to Search
Start Over
Microglial GRK2: a novel regulator of transition from acute to chronic pain.
- Source :
-
Brain, behavior, and immunity [Brain Behav Immun] 2011 Aug; Vol. 25 (6), pp. 1055-60. Date of Electronic Publication: 2011 Apr 05. - Publication Year :
- 2011
-
Abstract
- Pain is a hallmark of tissue damage and inflammation promoting tissue protection and thereby contributing to repair. Therefore, transient acute pain is an important feature of the adaptive response to damage. However, in a significant number of cases, pain persists for months to years after the problem that originally caused the pain has resolved. Such chronic pain is maladaptive as it no longer serves a protective aim. Chronic pain is debilitating, both physiologically and psychologically, and treatments to provide relief from chronic pain are often ineffective. The neurobiological mechanisms underlying the transition from adaptive acute pain to maladaptive chronic pain are only partially understood. In this review, we will summarize recent evidence that a kinase known as G protein-coupled receptor kinase (GRK2) is a key regulator of the transition from acute to chronic inflammatory pain. Our recent studies have shown that mice with a reduction in the cellular level of GRK2 develop chronic hyperalgesia in response to inflammatory mediators that induce only transient hyperalgesia in WT mice. This finding is clinically relevant because rodent models of chronic pain are associated with reduced cellular levels of GRK2. We propose that GRK2 is a newly discovered major player in the regulation of chronic pain. The pathways regulated by this kinase may open up new avenues for development of treatment strategies that target the cause, and not the symptoms of chronic pain.<br /> (Copyright © 2011 Elsevier Inc. All rights reserved.)
- Subjects :
- Acute Pain enzymology
Acute Pain physiopathology
Animals
Chronic Pain physiopathology
Cytokines metabolism
Disease Models, Animal
Forecasting
G-Protein-Coupled Receptor Kinase 2 deficiency
G-Protein-Coupled Receptor Kinase 2 genetics
Gene Expression Regulation, Enzymologic
Humans
Hyperalgesia enzymology
Hyperalgesia physiopathology
Macrophages enzymology
Mice
Mice, Knockout
Mice, Transgenic
Microglia metabolism
Neuralgia physiopathology
Receptors, Interleukin-1 physiology
Sciatic Nerve injuries
Signal Transduction
Spinal Cord pathology
Spinal Cord physiopathology
Spinal Nerves injuries
Chronic Pain enzymology
G-Protein-Coupled Receptor Kinase 2 physiology
Inflammation physiopathology
Microglia enzymology
Neuralgia enzymology
Subjects
Details
- Language :
- English
- ISSN :
- 1090-2139
- Volume :
- 25
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- Brain, behavior, and immunity
- Publication Type :
- Academic Journal
- Accession number :
- 21473908
- Full Text :
- https://doi.org/10.1016/j.bbi.2011.03.019