Back to Search
Start Over
Root signalling and modulation of stomatal closure in flooded citrus seedlings.
- Source :
-
Plant physiology and biochemistry : PPB [Plant Physiol Biochem] 2011 Jun; Vol. 49 (6), pp. 636-45. Date of Electronic Publication: 2011 Mar 12. - Publication Year :
- 2011
-
Abstract
- In this work, we studied the sequence of responses induced by flooding in citrus plants, with the aim of identifying the signals that lead to stomatal closure. One-year-old seedlings of Carrizo citrange, grown in sand under greenhouse conditions, were waterlogged for 35 d and compared with normally watered well-drained plants. Significant decreases in stomatal conductance and transpiration were detected between flooded and control seedlings from a week after the beginning of the experiment. However ABA concentration in leaves only started to increase after three weeks of flooding, suggesting that stomata closed in the absence of a rise in foliar ABA. Therefore, stomatal closure in waterlogged seedlings does not appear to be induced by ABA, at least during the early stages of flood-stress. The low levels of ABA detected in roots and xylem sap from flooded seedlings indicated that it is very unlikely that the ABA increase in the leaves of these plants is due to ABA translocation from roots to shoots. We propose that ABA is produced in old leaves and transported to younger leaves. Flooding had no effect on water potential or the relative water content of leaves. Soil flooding reduced root hydraulic conductance in citrus seedlings. This effect was already evident after a week of waterlogging, and at the end of the experiment, flood-stressed seedlings reached values of root hydraulic conductance below 12% of that of control plants. This reduction was related to down-regulation of the expression of PIP aquaporins. In addition, whole plant transpiration was reduced by 56% after 35 d under flooding conditions. Flood-stress also decreased the pH of sap extracted from citrus roots. Evidence is presented suggesting that acidosis induced by anoxic stress in roots causes gating of aquaporins, thereby decreasing hydraulic conductance. Additionally, stomatal closure finely balances-out low pH-mediated losses of root hydraulic conductance therefore maintaining stable leaf hydration.<br /> (Copyright © 2011 Elsevier Masson SAS. All rights reserved.)
- Subjects :
- Abscisic Acid metabolism
Acidosis
Anaerobiosis
Aquaporins metabolism
Biological Transport
Down-Regulation
Floods
Hydrogen-Ion Concentration
Plant Proteins metabolism
Plant Transpiration
Seedlings physiology
Signal Transduction
Soil
Adaptation, Physiological
Citrus physiology
Plant Roots physiology
Plant Stomata physiology
Stress, Physiological
Water physiology
Subjects
Details
- Language :
- English
- ISSN :
- 1873-2690
- Volume :
- 49
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- Plant physiology and biochemistry : PPB
- Publication Type :
- Academic Journal
- Accession number :
- 21459591
- Full Text :
- https://doi.org/10.1016/j.plaphy.2011.03.003