Back to Search Start Over

Quantification of coronary microvascular resistance using angiographic images for volumetric blood flow measurement: in vivo validation.

Authors :
Zhang Z
Takarada S
Molloi S
Source :
American journal of physiology. Heart and circulatory physiology [Am J Physiol Heart Circ Physiol] 2011 Jun; Vol. 300 (6), pp. H2096-104. Date of Electronic Publication: 2011 Mar 11.
Publication Year :
2011

Abstract

Structural coronary microcirculation abnormalities are important prognostic determinants in clinical settings. However, an assessment of microvascular resistance (MR) requires a velocity wire. A first-pass distribution analysis technique to measure volumetric blood flow has been previously validated. The aim of this study was the in vivo validation of the MR measurement technique using first-pass distribution analysis. Twelve anesthetized swine were instrumented with a transit-time ultrasound flow probe on the proximal segment of the left anterior descending coronary artery (LAD). Microspheres were injected into the LAD to create a model of microvascular dysfunction. Adenosine (400 μg·kg(-1)·min(-1)) was used to produce maximum hyperemia. A region of interest in the LAD arterial bed was drawn to generate time-density curves using angiographic images. Volumetric blood flow measurements (Q(a)) were made using a time-density curve and the assumption that blood was momentarily replaced with contrast agent during the injection. Blood flow from the flow probe (Q(p)), coronary pressure (P(a)), and right atrium pressure (P(v)) were continuously recorded. Flow probe-based normalized MR (NMR(p)) and angiography-based normalized MR (NMR(a)) were calculated using Q(p) and Q(a), respectively. In 258 measurements, Q(a) showed a strong correlation with the gold standard Q(p) (Q(a) = 0.90 Q(p) + 6.6 ml/min, r(2) = 0.91, P < 0.0001). NMR(a) correlated linearly with NMR(p) (NMR(a) = 0.90 NMR(p) + 0.02 mmHg·ml(-1)·min(-1), r(2) = 0.91, P < 0.0001). Additionally, the Bland-Altman analysis showed a close agreement between NMR(a) and NMR(p). In conclusion, a technique based on angiographic image data for quantifying NMR was validated using a swine model. This study provides a method to measure NMR without using a velocity wire, which can potentially be used to evaluate microvascular conditions during coronary arteriography.

Details

Language :
English
ISSN :
1522-1539
Volume :
300
Issue :
6
Database :
MEDLINE
Journal :
American journal of physiology. Heart and circulatory physiology
Publication Type :
Academic Journal
Accession number :
21398596
Full Text :
https://doi.org/10.1152/ajpheart.01123.2010