Back to Search
Start Over
Pharmacokinetics of dietary cancer chemopreventive compound dibenzoylmethane in rats and the impact of nanoemulsion and genetic knockout of Nrf2 on its disposition.
- Source :
-
Biopharmaceutics & drug disposition [Biopharm Drug Dispos] 2011 Mar; Vol. 32 (2), pp. 65-75. Date of Electronic Publication: 2010 Dec 16. - Publication Year :
- 2011
-
Abstract
- The pharmacokinetic disposition of a dietary cancer chemopreventive compound dibenzoylmethane (DBM) was studied in male Sprague-Dawley rats after intravenous (i.v.) and oral (p.o.) administrations. Following a single i.v. bolus dose, the mean plasma clearance (CL) of DBM was low compared with the hepatic blood flow. DBM displayed a high volume of distribution (Vss). The elimination terminal t1/2 was long. The mean CL, Vss and AUC0-∞/dose were similar between the i.v. 10 and 10 mg/kg doses. After single oral doses (10, 50 and 250 mg/kg), the absolute oral bioavailability (F*) of DBM was 7.4%-13.6%. The increase in AUC was not proportional to the oral doses, suggesting non-linearity. In silico prediction of oral absorption also demonstrated low DBM absorption in vivo. An oil-in-water nanoemulsion containing DBM was formulated to potentially overcome the low F* due to poor water solubility of DBM, with enhanced oral absorption. Finally, to examine the role of Nrf2 on the pharmacokinetics of DBM, since DBM activates the Nrf2-dependent detoxification pathways, Nrf2 wild-type (+/+) mice and Nrf2 knockout (-/-) mice were utilized. There was an increased systemic plasma exposure of DBM in Nrf2 (-/-) mice, suggesting that the Nrf2 genotype could also play a role in the pharmacokinetic disposition of DBM. Taken together, the results show that DBM has low oral bioavailability which could be due in part to poor water solubility and this could be overcome by a nanotechnology-based drug delivery system and furthermore the Nrf2 genotype could also play a role in the pharmacokinetics of DBM.<br /> (Copyright © 2010 John Wiley & Sons, Ltd.)
- Subjects :
- Administration, Oral
Animals
Anticarcinogenic Agents administration & dosage
Area Under Curve
Biological Availability
Chalcones administration & dosage
Dose-Response Relationship, Drug
Emulsions
Half-Life
Injections, Intravenous
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Nanotechnology
Rats
Rats, Sprague-Dawley
Solubility
Tissue Distribution
Anticarcinogenic Agents pharmacokinetics
Chalcones pharmacokinetics
NF-E2-Related Factor 2 genetics
Nanoparticles
Subjects
Details
- Language :
- English
- ISSN :
- 1099-081X
- Volume :
- 32
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- Biopharmaceutics & drug disposition
- Publication Type :
- Academic Journal
- Accession number :
- 21341276
- Full Text :
- https://doi.org/10.1002/bdd.734