Back to Search
Start Over
Biphasic chromatin binding of histone chaperone FACT during eukaryotic chromatin DNA replication.
- Source :
-
Biochimica et biophysica acta [Biochim Biophys Acta] 2011 Jun; Vol. 1813 (6), pp. 1129-36. Date of Electronic Publication: 2011 Jan 11. - Publication Year :
- 2011
-
Abstract
- The facilitates chromatin transcription (FACT) complex affects nuclear DNA transactions in a chromatin context. Though the involvement of FACT in eukaryotic DNA replication has been revealed, a clear understanding of its biochemical behavior during DNA replication still remains elusive. Here, we analyzed the chromatin-binding dynamics of FACT using Xenopus egg extract cell-free system. We found that FACT has at least two distinct chromatin-binding phases: (1) a rapid chromatin-binding phase at the onset of DNA replication that did not involve origin licensing and (2) a second phase of chromatin binding that initiated after origin licensing. Intriguingly, early-binding FACT dissociated from chromatin when DNA replication was blocked by the addition of Cdc6 in the licensed state before origin firing. Cdc6-induced removal of FACT was blocked by the inhibition of origin licensing with geminin, but not by suppressing the activity of DNA polymerases, CDK, or Cdc7. Furthermore, chromatin transfer experiments revealed that impairing the later binding of FACT severely compromises DNA replication activity. Taken together, we propose that even though FACT has rapid chromatin-binding activity, the binding pattern of FACT on chromatin changes after origin licensing, which may contribute to the establishment of its functional link to the DNA replication machinery.<br /> (Copyright © 2011 Elsevier B.V. All rights reserved.)
- Subjects :
- Animals
Cell Cycle Proteins genetics
Cell Cycle Proteins metabolism
Chromatin genetics
DNA-Binding Proteins genetics
Eukaryotic Cells metabolism
Female
Glutathione Transferase genetics
Glutathione Transferase metabolism
High Mobility Group Proteins genetics
Histone Chaperones genetics
Histone Chaperones metabolism
Humans
Immunoblotting
Kinetics
Male
Nuclear Proteins genetics
Nuclear Proteins metabolism
Oocytes metabolism
Protein Binding
Spermatozoa metabolism
Time Factors
Transcriptional Elongation Factors genetics
Xenopus laevis
Chromatin metabolism
DNA Replication
DNA-Binding Proteins metabolism
High Mobility Group Proteins metabolism
Transcriptional Elongation Factors metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 0006-3002
- Volume :
- 1813
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- Biochimica et biophysica acta
- Publication Type :
- Academic Journal
- Accession number :
- 21232560
- Full Text :
- https://doi.org/10.1016/j.bbamcr.2011.01.002