Back to Search
Start Over
New insights into the role of RNase L in innate immunity.
- Source :
-
Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research [J Interferon Cytokine Res] 2011 Jan; Vol. 31 (1), pp. 49-57. Date of Electronic Publication: 2010 Dec 29. - Publication Year :
- 2011
-
Abstract
- The interferon (IFN)-inducible 2'-5'-oligoadenylate synthetase (OAS)/RNase L pathway blocks infections by some types of viruses through cleavage of viral and cellular single-stranded RNA. Viruses induce type I IFNs that initiate signaling to the OAS genes. OAS proteins are pathogen recognition receptors for the viral pathogen-associated molecular pattern, double-stranded RNA. Double-stranded RNA activates OAS to produce p(x)5'A(2'p5'A)(n); x = 1-3; n > 2 (2-5A) from ATP. Upon binding 2-5A, RNase L is converted from an inactive monomer to a potently active dimeric endoribonuclease for single-stranded RNA. RNase L contains, from N- to C-terminus, a series of 9 ankyrin repeats, a linker, several protein kinase-like motifs, and a ribonuclease domain homologous to Ire1 (involved in the unfolded protein response). In the past few years, it has become increasingly apparent that RNase L and OAS contribute to innate immunity in many ways. For example, small RNA cleavage products produced by RNase L during viral infections can signal to the retinoic acid-inducible-I like receptors to amplify and perpetuate signaling to the IFN-β gene. In addition, RNase L is now implicated in protecting the central nervous system against viral-induced demyelination. A role in tumor suppression was inferred by mapping of the RNase L gene to the hereditary prostate cancer 1 (HPC1) gene, which in turn led to discovery of the xenotropic murine leukemia-related virus. A broader role in innate immunity is suggested by involvement of RNase L in cytokine induction and endosomal pathways that suppress bacterial infections. These newly described findings about RNase L could eventually provide the basis for developing broad-spectrum antimicrobial drugs.
- Subjects :
- 2',5'-Oligoadenylate Synthetase genetics
2',5'-Oligoadenylate Synthetase metabolism
Animals
Antigens, Surface metabolism
Demyelinating Diseases prevention & control
ELAV Proteins
ELAV-Like Protein 1
Endoribonucleases genetics
Gene Expression Regulation
Host-Pathogen Interactions
Humans
Interferons genetics
Interferons metabolism
Neoplasms immunology
Neoplasms metabolism
Protein Interaction Domains and Motifs
RNA, Double-Stranded metabolism
RNA, Messenger metabolism
RNA, Viral metabolism
RNA-Binding Proteins metabolism
Sequence Homology, Amino Acid
Virus Diseases immunology
Virus Diseases metabolism
Endoribonucleases metabolism
Immunity, Innate
Subjects
Details
- Language :
- English
- ISSN :
- 1557-7465
- Volume :
- 31
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research
- Publication Type :
- Academic Journal
- Accession number :
- 21190483
- Full Text :
- https://doi.org/10.1089/jir.2010.0120