Back to Search
Start Over
Regulation of KEAP1 expression by promoter methylation in malignant gliomas and association with patient's outcome.
- Source :
-
Epigenetics [Epigenetics] 2011 Mar; Vol. 6 (3), pp. 317-25. Date of Electronic Publication: 2011 Mar 01. - Publication Year :
- 2011
-
Abstract
- In light with the view that KEAP1 loss of function may impact tumour behavior and modify response to chemotherapeutical agents, we sought to determine whether KEAP1 gene is epigenetically regulated in malignant gliomas. We developed a Quantitative Methylation Specific PCR (QMSP) assay to analyze 86 malignant gliomas and 20 normal brain tissues. The discriminatory power of the assay was assessed by Receiving Operating Characteristics (ROC) curve analysis. The AUC value of the curve was 0.823 (95%CI: 0.764-0.883) with an optimal cut off value of 0.133 yielding a 74% sensitivity (95%CI: 63%-82%) and an 85% specificity (95%CI: 64%-95%). Bisulfite sequencing analysis confirmed QMSP results and demonstrated a direct correlation between percentage of methylated CpGs and methylation levels (Spearman's Rho 0.929, P=0.003). Remarkably, a strong inverse correlation was observed between methylation levels and KEAP1 mRNA transcript in tumour tissue (Spearman's Rho -0.656 P=0.0001) and in a cell line before and after treatment with 5-azacytidine (P=0.003). RECPAM multivariate statistical analysis studying the interaction between MGMT and KEAP1 methylation in subjects treated with radiotherapy and temozolomide (n=70), identified three prognostic classes of glioma patients at different risk to progress. While simultaneous methylation of MGMT and KEAP1 promoters was associated with the lowest risk to progress, patients showing only MGMT methylation were the subgroup at the higher risk (HR 5.54, 95% CI 1.35-22.74). Our results further suggest that KEAP1 expression is epigenetically regulated. In addition we demonstrated that KEAP1 is frequently methylated in malignant gliomas and a predictor of patient's outcome.
- Subjects :
- Antineoplastic Agents, Alkylating therapeutic use
Dacarbazine analogs & derivatives
Dacarbazine pharmacology
Glioma drug therapy
Humans
Intracellular Signaling Peptides and Proteins metabolism
Kelch-Like ECH-Associated Protein 1
NF-E2-Related Factor 2 genetics
NF-E2-Related Factor 2 metabolism
Temozolomide
Treatment Outcome
DNA Methylation
Gene Expression Regulation, Neoplastic
Glioma genetics
Intracellular Signaling Peptides and Proteins genetics
Promoter Regions, Genetic genetics
Subjects
Details
- Language :
- English
- ISSN :
- 1559-2308
- Volume :
- 6
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- Epigenetics
- Publication Type :
- Academic Journal
- Accession number :
- 21173573
- Full Text :
- https://doi.org/10.4161/epi.6.3.14408