Back to Search
Start Over
Structural Analysis of CYP101C1 from Novosphingobium aromaticivorans DSM12444.
- Source :
-
Chembiochem : a European journal of chemical biology [Chembiochem] 2011 Jan 03; Vol. 12 (1), pp. 88-99. - Publication Year :
- 2011
-
Abstract
- CYP101C1 from Novosphingobium aromaticivorans DSM12444 is a homologue of CYP101D1 and CYP101D2 enzymes from the same bacterium and CYP101A1 from Pseudomonas putida. CYP101C1 does not bind camphor but is capable of binding and hydroxylating ionone derivatives including α- and β-ionone and β-damascone. The activity of CYP101C1 was highest with β-damascone (k(cat)=86 s(-1)) but α-ionone oxidation was the most regioselective (98 % at C3). The crystal structures of hexane-2,5-diol- and β-ionone-bound CYP101C1 have been solved; both have open conformations and the hexanediol-bound form has a clear access channel from the heme to the bulk solvent. The entrance of this channel is blocked when β-ionone binds to the enzyme. The heme moiety of CYP101C1 is in a significantly different environment compared to the other structurally characterised CYP101 enzymes. The likely ferredoxin binding site on the proximal face of CYP101C1 has a different topology but a similar overall positive charge compared to CYP101D1 and CYP101D2, all of which accept electrons from the ArR/Arx class I electron transfer system.
Details
- Language :
- English
- ISSN :
- 1439-7633
- Volume :
- 12
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Chembiochem : a European journal of chemical biology
- Publication Type :
- Academic Journal
- Accession number :
- 21154803
- Full Text :
- https://doi.org/10.1002/cbic.201000537