Back to Search
Start Over
Changes in protein profiles of guinea pig sclera during development of form deprivation myopia and recovery.
- Source :
-
Molecular vision [Mol Vis] 2010 Oct 27; Vol. 16, pp. 2163-74. Date of Electronic Publication: 2010 Oct 27. - Publication Year :
- 2010
-
Abstract
- Purpose: To investigate changes in protein profiles of posterior sclera in guinea pigs during development of form deprivation myopia and recovery.<br />Methods: Three groups of guinea pigs (developing form deprivation myopia, recovering from the myopia and normal control) were evaluated for protein profiles of the posterior sclera using two-dimensional gel electrophoresis. Protein spots with a different intensity of at least threefold among the 3 groups were further identified with mass spectrometry. Key proteins associated with ocular growth (crystallins) were examined at mRNA levels using RT-PCR.<br />Results: Moderate myopia was induced at 7 weeks of monocular deprivation and then more gradually recovered toward the previous refractive status 4 days after re-exposure of the eye to normal visual conditions. The profile of all protein spots at the posterior sclera was similar for both the deprived and the recovery eyes but distinct between either of the 2 experimental eyes and the normal control eyes. Twenty-six and 33 protein spots were differentially expressed in the deprived and the recovery eyes, respectively, compared to the normal control eyes. In contrast, the number of proteins differentially expressed between the deprived and the recovery eyes was only 5. Among the different subtypes of crystallins, βB2-crystallin was down-regulated and βA4-crystallin was upregulated in the deprived eyes at both protein and mRNA levels compared to the normal control eyes. The trend of expression for βA3/A1-crystallin was also similar at both mRNA and protein levels for the deprived eyes. However, αA-crystallin mRNA in the recovery eyes was upregulated while αA-crystallin itself was down-regulated. A similar inconsistency in expression of βA3/A1-, βA4-, and βB2-crystallins between the protein and mRNA levels also occurred in the recovery eyes.<br />Conclusions: Proteomic analysis provides a useful survey of the number of proteins whose levels change during form deprivation myopia and the subsequent recovery. In particular, the crystallins changed during the development of form deprivation myopia and recovery. The changes in crystallin protein levels were consistent with that in mRNA levels during the development stage of form-deprivation myopia (FDM). However, the changes of most crystallin protein levels were mismatched with mRNA levels during the recovery stage.
- Subjects :
- Animals
Electrophoresis, Gel, Two-Dimensional
Eye Proteins genetics
Gene Expression Regulation
Guinea Pigs
Myopia pathology
Phenotype
RNA, Messenger genetics
RNA, Messenger metabolism
Reproducibility of Results
Reverse Transcriptase Polymerase Chain Reaction
Sclera physiopathology
Eye Proteins metabolism
Myopia metabolism
Myopia physiopathology
Proteomics
Recovery of Function physiology
Sclera metabolism
Sclera pathology
Subjects
Details
- Language :
- English
- ISSN :
- 1090-0535
- Volume :
- 16
- Database :
- MEDLINE
- Journal :
- Molecular vision
- Publication Type :
- Academic Journal
- Accession number :
- 21139681