Back to Search Start Over

Bulk heterojunction photovoltaics using broadly absorbing small molecules based on 2-styryl-5-phenylazo-pyrrole.

Authors :
Mikroyannidis JA
Kabanakis AN
Balraju P
Sharma GD
Source :
Langmuir : the ACS journal of surfaces and colloids [Langmuir] 2010 Nov 16; Vol. 26 (22), pp. 17739-48. Date of Electronic Publication: 2010 Oct 25.
Publication Year :
2010

Abstract

Three new soluble small molecules (B, B6, and A) with a low band gap based on 2-styryl-5-phenylazo-pyrrole were synthesized. Molecules B and B6 contained pyrrole and N-hexylpyrrole, respectively, as the central unit, which was connected to N,N-dimethylphenyl-4-azo on one side of the pyrrole molecule. Molecule A contained N-hexylpyrrole as the central unit, which was connected to anthracenyl-9-azo on one side of the pyrrole molecule. The other side of the pyrrole molecule was connected to cyanovinylene 4-nitrophenyl for all molecules. The long-wavelength absorption maximum of the molecules was located at 601-637 nm, and their optical band gap was 1.62-1.67 eV. The photovoltaic properties have been investigated using blends of B, B6, or A with PCBM, and it was found that the device based on A:PCBM had a higher power conversion efficiency (PCE) (2.06%) than the devices based on B:PCBM (1.33%) and B6:PCBM (1.36%). This has been attributed to the higher hole mobility, the lower band gap of A relative to that of B or B6, and the higher energy difference between the LUMO of A and PCBM. The effect of solvent annealing and thermal-solvent annealing on the photovoltaic response of the device based on the A:PCBM blend has been investigated, and it was found that the devices based on solvent-treated and subsequent thermally annealed blends have PCEs of 2.56 and 2.83%, respectively. The increase in the PCE has been attributed to the enhanced crystallinity of the blend and the improvement in the charge transport due to a reduction in the difference between the electron and hole mobility in the blend.

Details

Language :
English
ISSN :
1520-5827
Volume :
26
Issue :
22
Database :
MEDLINE
Journal :
Langmuir : the ACS journal of surfaces and colloids
Publication Type :
Academic Journal
Accession number :
20973469
Full Text :
https://doi.org/10.1021/la103168t