Back to Search
Start Over
Restricted brain penetration of the tyrosine kinase inhibitor erlotinib due to the drug transporters P-gp and BCRP.
- Source :
-
Investigational new drugs [Invest New Drugs] 2012 Apr; Vol. 30 (2), pp. 443-9. Date of Electronic Publication: 2010 Oct 21. - Publication Year :
- 2012
-
Abstract
- Purpose: Erlotinib (Tarceva®, OSI-774) is a small molecule inhibitor of the epidermal growth factor receptor (EGFR) tyrosine kinase. As high-grade gliomas frequently show amplification, overexpression and/or mutation of EGFR, this drug has been tested in several clinical trials with glioblastoma patients, but unfortunately, with little success. As erlotinib is a known substrate of P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) we have investigated the effect of these ABC-transporters on the brain penetration of erlotinib.<br />Study Design: Erlotinib (50 mg/kg) was given by i.p. administration to wild-type (WT), Mdr1ab(-/-) (single P-gp knockout), Bcrp1(-/-) (single Bcrp1 knockout) and Mdr1ab(-/-)Bcrp1(-/-) (compound P-gp and Bcrp1 knockout) mice. Drug levels in plasma and tissues were determined by reversed-phase high-performance liquid chromatography.<br />Results: Relative to Mdr1ab(-/-)Bcrp1(-/-) mice that are deficient for both drug transporters, the area under the concentration time curve in brain tissue (AUC)(brain) of erlotinib decreased significantly by 1.6-fold in Mdr1ab(-/-) mice where Bcrp1 is present (49.6 ± 3.95 versus 31.1 ± 1.7, μg/g*h; P < 0.01). In Bcrp1(-/-) mice, were P-gp is present, a more pronounced 3.8-fold decrease to 13.0 ± 0.70, μg/g*h (P < 0.01) was observed, which is close to the 4.5-fold decrease in the AUC(brain) of erlotinib found in WT mice where both drug transporters are present (11.0 ± 1.35, P < 0.01). The plasma clearance of erlotinib was similar in mice deficient for P-gp and/or Bcrp1 compared with wild-type mice. In all other tissues the differences between the genotypes were negligible.<br />Conclusions: Both P-gp and Bcrp1 reduce the brain penetration of erlotinib. Although P-gp appears to be the most effective factor limiting the brain penetration of erlotinib, the highest brain accumulation was observed when Bcrp1 was also absent. Strategies to inhibit P-gp/BCRP in patients to improve delivery of (novel molecular-targeted) substrate agents, such as erlotinib, to the brain may be required for treatment of intracranial malignancies.
- Subjects :
- ATP Binding Cassette Transporter, Subfamily B deficiency
ATP Binding Cassette Transporter, Subfamily B genetics
ATP Binding Cassette Transporter, Subfamily G, Member 2
ATP-Binding Cassette Transporters genetics
Animals
Antineoplastic Agents administration & dosage
Antineoplastic Agents blood
Area Under Curve
Chromatography, High Pressure Liquid
Chromatography, Reverse-Phase
Erlotinib Hydrochloride
Female
Injections, Intraperitoneal
Metabolic Clearance Rate
Mice
Mice, Knockout
Protein Kinase Inhibitors administration & dosage
Protein Kinase Inhibitors blood
Quinazolines administration & dosage
Quinazolines blood
Tissue Distribution
ATP-Binding Cassette Sub-Family B Member 4
ATP Binding Cassette Transporter, Subfamily B metabolism
ATP-Binding Cassette Transporters metabolism
Antineoplastic Agents pharmacokinetics
Blood-Brain Barrier metabolism
Capillary Permeability
Protein Kinase Inhibitors pharmacokinetics
Quinazolines pharmacokinetics
Subjects
Details
- Language :
- English
- ISSN :
- 1573-0646
- Volume :
- 30
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- Investigational new drugs
- Publication Type :
- Academic Journal
- Accession number :
- 20963470
- Full Text :
- https://doi.org/10.1007/s10637-010-9569-1