Back to Search
Start Over
Structural bases of dimerization of yeast telomere protein Cdc13 and its interaction with the catalytic subunit of DNA polymerase α.
- Source :
-
Cell research [Cell Res] 2011 Feb; Vol. 21 (2), pp. 258-74. Date of Electronic Publication: 2010 Sep 28. - Publication Year :
- 2011
-
Abstract
- Budding yeast Cdc13-Stn1-Ten1 (CST) complex plays an essential role in telomere protection and maintenance, and has been proposed to be a telomere-specific replication protein A (RPA)-like complex. Previous genetic and structural studies revealed a close resemblance between Stn1-Ten1 and RPA32-RPA14. However, the relationship between Cdc13 and RPA70, the largest subunit of RPA, has remained unclear. Here, we report the crystal structure of the N-terminal OB (oligonucleotide/oligosaccharide binding) fold of Cdc13. Although Cdc13 has an RPA70-like domain organization, the structures of Cdc13 OB folds are significantly different from their counterparts in RPA70, suggesting that they have distinct evolutionary origins. Furthermore, our structural and biochemical analyses revealed unexpected dimerization by the N-terminal OB fold and showed that homodimerization is probably a conserved feature of all Cdc13 proteins. We also uncovered the structural basis of the interaction between the Cdc13 N-terminal OB fold and the catalytic subunit of DNA polymerase α (Pol1), and demonstrated a role for Cdc13 dimerization in Pol1 binding. Analysis of the phenotypes of mutants defective in Cdc13 dimerization and Cdc13-Pol1 interaction revealed multiple mechanisms by which dimerization regulates telomere lengths in vivo. Collectively, our findings provide novel insights into the mechanisms and evolution of Cdc13.
- Subjects :
- Catalytic Domain
Crystallography, X-Ray
DNA Polymerase I metabolism
Dimerization
Mutation
Protein Binding
Protein Structure, Tertiary
Replication Protein A metabolism
Saccharomyces cerevisiae Proteins genetics
Saccharomyces cerevisiae Proteins metabolism
Telomere-Binding Proteins genetics
Telomere-Binding Proteins metabolism
DNA Polymerase I chemistry
Saccharomyces cerevisiae metabolism
Saccharomyces cerevisiae Proteins chemistry
Telomere metabolism
Telomere-Binding Proteins chemistry
Subjects
Details
- Language :
- English
- ISSN :
- 1748-7838
- Volume :
- 21
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- Cell research
- Publication Type :
- Academic Journal
- Accession number :
- 20877309
- Full Text :
- https://doi.org/10.1038/cr.2010.138