Back to Search Start Over

Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia.

Authors :
Cavazzana-Calvo M
Payen E
Negre O
Wang G
Hehir K
Fusil F
Down J
Denaro M
Brady T
Westerman K
Cavallesco R
Gillet-Legrand B
Caccavelli L
Sgarra R
Maouche-Chrétien L
Bernaudin F
Girot R
Dorazio R
Mulder GJ
Polack A
Bank A
Soulier J
Larghero J
Kabbara N
Dalle B
Gourmel B
Socie G
Chrétien S
Cartier N
Aubourg P
Fischer A
Cornetta K
Galacteros F
Beuzard Y
Gluckman E
Bushman F
Hacein-Bey-Abina S
Leboulch P
Source :
Nature [Nature] 2010 Sep 16; Vol. 467 (7313), pp. 318-22.
Publication Year :
2010

Abstract

The β-haemoglobinopathies are the most prevalent inherited disorders worldwide. Gene therapy of β-thalassaemia is particularly challenging given the requirement for massive haemoglobin production in a lineage-specific manner and the lack of selective advantage for corrected haematopoietic stem cells. Compound β(E)/β(0)-thalassaemia is the most common form of severe thalassaemia in southeast Asian countries and their diasporas. The β(E)-globin allele bears a point mutation that causes alternative splicing. The abnormally spliced form is non-coding, whereas the correctly spliced messenger RNA expresses a mutated β(E)-globin with partial instability. When this is compounded with a non-functional β(0) allele, a profound decrease in β-globin synthesis results, and approximately half of β(E)/β(0)-thalassaemia patients are transfusion-dependent. The only available curative therapy is allogeneic haematopoietic stem cell transplantation, although most patients do not have a human-leukocyte-antigen-matched, geno-identical donor, and those who do still risk rejection or graft-versus-host disease. Here we show that, 33 months after lentiviral β-globin gene transfer, an adult patient with severe β(E)/β(0)-thalassaemia dependent on monthly transfusions since early childhood has become transfusion independent for the past 21 months. Blood haemoglobin is maintained between 9 and 10 g dl(-1), of which one-third contains vector-encoded β-globin. Most of the therapeutic benefit results from a dominant, myeloid-biased cell clone, in which the integrated vector causes transcriptional activation of HMGA2 in erythroid cells with further increased expression of a truncated HMGA2 mRNA insensitive to degradation by let-7 microRNAs. The clonal dominance that accompanies therapeutic efficacy may be coincidental and stochastic or result from a hitherto benign cell expansion caused by dysregulation of the HMGA2 gene in stem/progenitor cells.

Details

Language :
English
ISSN :
1476-4687
Volume :
467
Issue :
7313
Database :
MEDLINE
Journal :
Nature
Publication Type :
Academic Journal
Accession number :
20844535
Full Text :
https://doi.org/10.1038/nature09328