Back to Search
Start Over
Surface exposure of apolipoproteins in high density lipoproteins. I. Reactivities with agarose-immobilized proteases.
- Source :
-
Biochimica et biophysica acta [Biochim Biophys Acta] 1978 May 25; Vol. 529 (2), pp. 319-30. - Publication Year :
- 1978
-
Abstract
- The exposure of apolipoproteins at the surface of human plasma high density lipoproteins (HDL) was assessed by their accessibility to agarose-immobilized forms of trypsin and chymotrypsin. Proteolysis of lipid-free apolipoproteins and the lipoprotein subfractions HDL2 (d = 1.08--1.125 g/ml) and HDL3 (d = 1.125--1.195 g/ml) that differ in lipid-to-protein ratio was compared by polyacrylamide gel electrophoresis and isoelectric focusing of the apolipoproteins and peptide fragments and by quantitation of the various carboxyl-terminal groups formed. Gel filtration of the proteolyzed lipoproteins on Sephadex G-150 column indicated that more than 90% of the apolipoproteins and peptides remain associated with lipoprotein complexes. Proteolysis of lipoproteins occurred more slowly and with less fragmentation of the lipoproteins and apolipoproteins than proteolysis of thelipid-free apolipoproteins or the proteolysis of lipoproteins by soluble proteases reported by other investigators. The difference in lipid content of HDL2 and HDL3 made little difference in their proteolysis. Proteolysis of the lipoproteins by agarose-trypsin was more rapid at 37 degrees C than at 22 degrees C, but the proteolytic products were similar and differed from the products from the lipid free proteins. Peptide fragments from lipoproteins were larger than those from lipid-free proteins, which suggests masking of potentially cleavable groups by lipid. The amounts (mol/g protein) of new carboxyl-terminal tyrosine and phenylalanine released by agarose -chymotrypsin were much greater from the lipid-free proteins, but about 3/4 of the tryptophan residues were inacessible in both lipoproteins and lipid-free proteins. In agarose-trypsin digestion, lysine residues were slightly more masked than arginine in the absence of lipids and much more so in the lipoproteins. However, in the lipoproteins apoA-II, which contains lysine but no arginine, was cleaved more rapidly and extensively by agarose-trypsin than apoA-I.
Details
- Language :
- English
- ISSN :
- 0006-3002
- Volume :
- 529
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- Biochimica et biophysica acta
- Publication Type :
- Academic Journal
- Accession number :
- 207344
- Full Text :
- https://doi.org/10.1016/0005-2760(78)90075-9